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Abstract

We study approaches for adjusting machine learning methods when the training sample
differs from the prediction sample on unobserved dimensions. The machine learning
literature predominately assumes selection only on observed dimensions. Common ap-
proaches are to weight or include variables that influence selection as solutions to selec-
tion on observables. Simulation results show that selection on unobservables increases
mean squared prediction error using popular machine-learning algorithms. Common
machine learning practices such as weighting or including variables that influence se-
lection into the training or prediction sample often worsens sample selection bias. We
propose two control-function approaches that remove the effects of selection bias before
training and find that they reduce mean-squared prediction error in simulations. We
apply these approaches to predicting the vote share of the incumbent in gubernatorial
elections using previously observed re-election bids. We find that ignoring selection
on unobservables leads to substantially higher predicted vote shares for the incumbent
than when the control function approach is used.
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1 Introduction

Machine learning (ML) has become increasingly popular in economics due in part to its

impressive “off-the-shelf” prediction capabilities (see e.g., Varian 2014, Bajari et al. 2015,

Athey 2017, Mullainathan & Spiess 2017, Athey 2018, for overviews of ML applications in

economics). In the canonical supervised-learning case, a researcher trains a ML algorithm

on a set of training data for which she observes both attributes and outcomes and uses the

ML algorithm to predict outcomes for a set of prediction data for which she observes only

the attributes. In economic applications, the data are often not randomly assigned to the

training set and prediction set — instead, the researcher observes outcomes in the training

set for a reason.

Consider the example of predicting election outcomes for incumbent candidates using

past election data. Because past election data only include incumbents who chose to run

again, the training data suffer from sample selection. The selection decision is likely based on

the politician’s private beliefs of the probability of re-election which will bias the distribution

of observed outcomes. This is an example of selection on unobservables where the mechanism

that determines selection is potentially correlated with the outcome conditional on observed

attributes. The ML literature focuses on the more restrictive case of selection on observables

in which the mechanism that determines selection is independent of the outcome conditional

on observed attributes (Shimodaira 2000, Zadrozny et al. 2003, Zadrozny 2004, Sugiyama

et al. 2007, 2008b). In many economic examples this setting is unrealistic, particularly when

being in the observed set of training data is the outcome of an economic decision as in the

incumbent election example.

In this paper, we review the leading ML approaches when there is selection and find

that assuming selection on observables is the most common approach. We document that

the literature justifies the selection on observables assumption by arguing that prediction is

immune to problems of selection on unobservables, machine learning algorithms are complex

enough to sort out selection effects automatically, and assuming selection on observables

is better than doing nothing to address selection. We characterize these arguments as the

prediction-is-immune, smart-algorithm, and do-something fallacies. In simulation, we refute

these arguments, showing that prediction performs worse when there is selection, that ML
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algorithms cannot automatically address selection, and that addressing selection on observ-

ables when there is selection on unobservables can worsen prediction.

We then review two existing estimation strategies to sample selection. The first is the

inverse probability weighting approach, popular in both the ML and econometrics literature

as a method to addressing selection on observables. The second is the control function

approach of Heckman (1979) as a method to address selection on unobservables. Although

the control function approach has been well-studied for regression-based estimators, it has

yet to be thoroughly considered in conjunction with ML algorithms. A contribution of this

paper is to propose two Heckman-style control function approaches that can work with a

variety of ML procedures. We then study whether the popular weighting approaches are

sensitive to violations of selection on observables. In simulation, we find that the weighting

approaches are quite sensitive to the violations of the selection on observables assumption. In

contrast, we find that the control function approaches that address selection on unobservables

generally improve the prediction performance.

Finally, we apply the different approaches to predict county-level vote shares for in-

cumbent U.S. governors based on county-level economic conditions using ML. To study the

incumbency advantage, we predict hypothetical election outcomes for incumbent governors

who do not run again. Because incumbents decide whether to run again based on private

information and preferences, the training set is likely to suffer from selection on unobserv-

ables. If incumbents decide to run again based on private information about the probability

of winning, observed incumbent vote shares will overstate the expected vote share relative

to incumbents who have not yet decided to run again. We find that ignoring selection, us-

ing a weighting approach to address selection on observables, and using a control function

approach to address selection on unobservables result in substantially different predicted

county vote shares. Addressing selection on unobservables reduces the proportion of pre-

dicted incumbent wins by as much as eight percentage points relative to ignoring selection

and seven percentage points relative to the weighted approach, which is a large effect given

the baseline predicted incumbent election rate is about 40%.

This paper adds to both the ML and econometrics literature on addressing sample selec-

tion. Many papers have proposed using weighting approaches to address sample selection in
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both the ML literature (Shimodaira 2000, Zadrozny et al. 2003, Zadrozny 2004, Huang et al.

2006, Sugiyama et al. 2007, 2008b) and the econometrics literature (Rosenbaum 1987, Robins

et al. 1995, Wooldridge 2002, 2007, Hirano et al. 2003). It is well established that this ap-

proach requires the selection on observables assumption, however, it is often casually stated

that the weighting approaches still perform well even if the selection on observables assump-

tions does not hold (e.g., Huang et al. 2006). This paper more thoroughly investigates this

claim by analyzing the sensitivity of the weighting estimators to violations of the selection

on observables assumption. We find that our work is complementary to Wooldridge (2007)

who re-examines the underlying assumptions for weighting approaches for M-estimators to

recover population objects of interest. He finds that using weights based only on observed

attributes can result in poor estimation when the correct weights depend on unobserved

information. However, he focuses on the case of missing covariates while we focus on the

case of missing outcomes.

Although there is a long literature in econometrics on how to address selection on unob-

servables (Heckman 1979, Vella 1998, Das et al. 2003), there has only been a recent growth

in interest in the ML literature.1 For example in the the recommender systems literature,

Steck (2010) Schnabel et al. (2016), Wang et al. (2019), and Zhang et al. (2020) propose

weighting approaches, but they use known/observed weights that depend on unobserved

information rather than using estimated weights that require the selection on observables

assumption. In this paper, we assume that the probability of being in the observed set of

training data is unknown and needs to be estimated. There has also been a recent surge in

the deep generative models literature in using imputation to address missing data that may

depend on unobserved attributes in the unsupervised learning setting (Ipsen et al. 2021, Ma

& Zhang 2021, Gong et al. 2021, Ghalebikesabi et al. 2021). However, we are considering a

supervised learning setting where the outcome is unobserved.

We are aware of only two papers that consider a similar control function approach to miss-

ing outcomes in the ML literature. Zadrozny & Elkan (2001) estimates a linear regression

with a Heckman-style control function where the probability of selection is estimated using

a variety of ML approaches. Zhu (2017) provides non-asymptotic properties of partial lin-

1There is also a recent and related strain of literature that addresses selection on unobservables with ML

but in the context of treatment effect estimation (Belloni et al. 2017, Feng et al. 2021).
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ear regressions with penalization, where addressing sample selection using a Heckman-style

control function is the leading example. The novel contribution of our work is to propose

using the a Heckman-style control function with different ML algorithms more generally and

to evaluate two different implementation approaches.

Our paper also relates to a growing literature in econometrics on the sensitivity of ML

methods to violations of underlying model assumptions. Angrist & Frandsen (2022) study

the sensitivity of using ML for variable selection in a instrumental variables model where

they find using ML methods like random forest for the first step can result in very poor

treatment effects estimates in the final stage. In a working paper, Hünermund et al. (2021)

study the effect of bad controls on the performance of double ML (Belloni et al. 2014). They

find that double ML is particularly sensitive to bad controls and is more likely to select the

bad controls when included in the set of potential control variables. Similarly, our paper

also finds that the ML methods that depend on the selection on observables assumption are

quite sensitive to the violations of that assumption.

The remainder of the paper is organized as follows. The next section describes the

model setup and introduces the selection framework. The following section discusses three

approaches to address selection in ML: ignoring selection, inverse-probability-weighting ap-

proaches, and a proposed Heckman control function approach from econometrics. The fifth

section presents simulation results for the sensitivity of the weighting approaches to violation

of the selection on observables assumption. In the simulations, we also show how the control

function approaches can help improve prediction when there is selection on unobservables.

The sixth section applies the considered methods to predicting incumbent gubernatorial

elections. The final section concludes and discusses directions for further research.

2 Selection assumptions in ML

We begin with a general sample-selection framework for a continuous outcome of interest Yi

for observation i drawn from the population:

Yi = f(Xi) + Ui, (1)
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where Yi is only observed if Si = 1 while the attributes Xi are always observed. We assume

the unobserved components Ui are mean independent of the attributes Xi, such that f(Xi) =

E(Yi|Xi) and is thus the best predictor in the mean-squared-error sense. The prediction goal

is to train on the observed outcome, {Yi : Si = 1} using attributes Xi and then apply the

trained learner to predict the outcome for a separate prediction sample not subject to sample

selection.2

When there is selection, the quality of prediction depends on two factors. First, predic-

tion quality depends on identifying the conditional mean f(Xi) = E(Yi|Xi), the best mean

squared predictor, when only the the mean conditional on selection E(Yi|Xi, Si = 1) is re-

coverable from the data. These two conditional means can be represented in the following

relationship

E(Yi|Xi, Si = 1) = f(Xi) + E(Ui|Xi, Si = 1). (2)

If (Si, Xi, Yi) are arbitrarily correlated with one another, i.e., there is selection on unob-

servables, then E(Ui|Xi, Si = 1) ̸= 0, and training on the selected sample will produce

predictions that converge to E(Yi|Xi, Si = 1) and not E(Yi|Xi), reducing prediction quality.

Second, prediction quality depends on the performance of the considered ML algorithm

as a sample approximation to a population object of interest, such as E(Yi|Xi). A primary

objective of this paper is to show that the ability of an algorithm to fit the selected training

data cannot overcome the bias if E(Yi|Xi, Si = 1) ̸= E(Yi|Xi). In other words, if E(Yi|Xi) is

poorly identified from E(Yi|Xi, Si = 1), then the quality of the ML algorithm cannot make

up for it and prediction accuracy will suffer.

2An alternative goal is to predict the unobserved counterpart to the training set, conditioned on the

information that Si = 0, predicting a counterfactual outcome. For example, following the incumbent’s

decision to not run for re-election, we may be interested in predicting the vote share if the incumbent had

made the opposite decision to run again. We provide the results of prediction on the unobserved sample in

the online supplementary appendix.
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2.1 The selection on observables assumption

One common approach to identifying the conditional mean E(Yi|Xi) when only {Yi, Xi :

Si = 1} is observed is to make the selection on observables assumption:

P (Si = 1|Xi, Yi) = P (Si = 1|Xi), (3)

which holds that the outcome is independent of selection conditional on the observed at-

tributes so E(Yi|Xi, Si = 1) = E(Yi|Xi). In other words, the object we would like to base

our predictions on but is generally not estimable, E(Yi|Xi), is assumed to be equivalent to

the object that is estimable, E(Yi|Xi, Si = 1).

In the selection on observables setting, importance weighting approaches (discussed in

section 3.2) can improve prediction, but the assumption of selection on observables is funda-

mental. In the literature, we identify three main arguments made in order to ignore selection

on unobservables and to proceed with estimation as if selection was on observables or as if

there was no selection. We refer to these arguments as the prediction-is-immune fallacy, the

smart-algorithm fallacy, and the do-something fallacy.

The misconception that the approaches of econometrics and ML are at odds leads to

the prediction-is-immune fallacy. While the econometrics field tends to focus on consistent

estimation and inference of parameters or attributes of a conditional distribution, the ML

field tends to focus on developing algorithms proven to have strong predictive performance

(Kleinberg et al. 2015, Athey 2018, Mullainathan & Spiess 2017).3 In one of the most highly-

cited treatments of selection in ML, Zadrozny (2004) claims,4 “In econometrics, the usual

assumption is [selection on unobservables] because the goal is to estimate the parameters

of a model... In classifier learning, this is not a concern, because we are mostly interested

in the predictive performance of the model and not in making conclusions about the un-

derlying mechanisms that generate the data.” However, a better understanding of the data

generating process is important for both parameter estimation and prediction. As discussed

earlier, quality prediction is a combination of identifying a population object, such as a con-

3Alternatively, Farrell et al. (2021) incorporates ML into econometrics models with goals beyond

prediction.

4Zadrozny (2004) has over 937 citations on Google Scholar as of March 6, 2023.
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ditional mean, and accurate sample approximation to the population object, which is often

better achieved by ML algorithms. Without the underlying assumptions that justify identi-

fication, one may be accurately approximating the wrong population object. In simulation,

we show that without the selection on observables assumption, predictive accuracy worsens,

demonstrating that prediction is not immune to endogenous selection.

The increase in complexity of ML algorithms has led to a shift of modelling responsibility

from the researcher to the algorithm and a false sense of security that the complexity of the

algorithm can compensate for a lack of understanding of the specific problems that plague the

data set or economic question, which leads to the smart-algorithm fallacy. When addressing

sample selection, understanding the role of the observed attributes is fundamental to accurate

prediction. Zadrozny (2004) states “In order to make the condition P (Si = 1|Xi, Yi) =

P (Si = 1|Xi) true in practice, the input to the classifier Xi has to include all the variables

that affect the sample selection.” This would suggest to the reader that including any

observable attribute that affects the sample selection process would be beneficial. However,

this is not true and can cause more harm than good.

For example, suppose we have access to an additional attribute Zi, an instrument, that is

only informative to the selection process such that it impacts selection but does not impact

the outcome, E(Yi|Xi, Zi) = E(Yi|Xi). Note that inclusion of Zi does not make the selection

on observables assumption hold, i.e. P (Si = 1|Xi, Zi, Yi) ̸= P (Si = 1|Xi, Zi), when selection

on unobservables is true. Thus, contradictory to the quote above, the inclusion of attributes

that affect the sample selection process only will not lead to the selection on observables

assumption holding. In fact, we find in simulation that including the instrument, Zi, when

selection on unobservables is true can worsen prediction. This reiterates the findings in

Wooldridge (2007), Bhattacharya & Vogt (2007), and Wooldridge (2016) that weighting and

matching methods can be inconsistent if instruments are misused in estimation. Angrist

& Frandsen (2022) similarly argues against the smart-algorithm fallacy in the instrumental

variables setting. They find that when it is left to the ML procedure to decide which

variables to include as IV controls, the ML procedure creates artificial exclusion restrictions

and spurious results.

Finally, the temptation to do something rather than nothing when the treatment may
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be worse than the cure leads to the do-something fallacy. For example, Huang et al. (2006)5

proposes a weighting approach which they acknowledge requires a selection on observables

assumption that is unlikely to hold, but they justify their assumption stating “we will see

experimentally that even in situations where our key assumption is not valid, our method

can nonetheless perform well.” In an experimental simulation, Huang et al. (2006) showed

in a single setting that weighting performs better than ignoring the sample selection when

selection on unobservables is true. However, this is not a general result.

[Figure 1 about here]

We replicated the simulated experiment in Huang et al. (2006) using the same UCI breast

cancer data considered in that paper. Huang et al. evaluates the mean squared prediction er-

ror on the prediction sample for an unweighted estimator, OLS, and two weighted estimators,

WLS - Logit and WLS - KMM, where the former uses logit to estimate the probability of

being selected and the later uses their proposed kernel means matching approach to estimate

weights.6 The validity of both weighting approaches depend on the selection on observables

assumption. The left plot in Figure 1 reports the results for the same data generating process

considered in Huang et al.7 Because the weighted approaches appeared to still have smaller

MSPE compared to the unweighted approach, they state: “remarkably, despite our assump-

tion regarding the difference between the training and test distributions being violated, our

method still improves the test performance.” But this result was very specific to the chosen

parameters. For example, a slight change to the probabilities of selection parameters pro-

duces the data generating process on the right plot.8 Now the weighted approaches do not

improve relative to the unweighted approach and on average perform slightly worse. This

reiterates a point made by Wooldridge (2007) that weighting approaches perform poorly if

5Huang et al. (2006) has 1849 citations on Google Scholar as of March 6, 2023.
6The KMM approach was implemented in Matlab using the code provided by

http://www.gatsby.ucl.ac.uk/∼gretton/covariateShiftFiles/covariateShiftSoftware.html, accessed March

2023.
7The data was split into a training and test set with 0.5 probability. Within the training set, each

observation is selected according to P (Si = 1|Yi = 1) = 0.1 and P (Si = 1|Yi = 0) = 0.9.

8Each observation is selected according to P (Si = 1|Yi = 1) = 0.9 and P (Si = 1|Yi = 0) = 0.45.
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the true weights depend on unobserved quantities. Therefore, choosing a weighting approach

when the underlying assumptions are not true comes with a cost to prediction quality.

Zadrozny (2004) also makes similar claims: “Even if [selection on observables] is not

true in practice (either because we do not have access to all the variables that control the

selection or because it truly depends directly on y), assuming [section on observables] is more

realistic than the usual [missing completely at random].” To the contrary, we demonstrate

in simulation that addressing selection on observables with a weighting approach can worsen

prediction when there is selection on unobservables, refuting the do-something fallacy.

3 Strategies to address selection

This section reviews three estimation strategies to address selection in ML. The first strategy

ignores sample selection altogether. The second strategy assumes selection on observables is

true and uses an importance weighting approach. We propose a final strategy which allows for

selection on unobservables and adopts the control function approach from Heckman (1979)

to be incorporated in ML algorithms.

3.1 Ignoring sample selection

An ML algorithm that ignores sample selection minimizes the following empirical loss func-

tion

min
θ

n∑
i=1

SiL
(
f̂(Xi, θ), Yi, α

)
, (4)

where L(·, ·, α) is the loss function that can depend on nuisance parameters α, f̂(Xi, θ)

represents a model for the conditional mean indexed by unknown parameters θ which can

be either finite or infinite dimensional, and Si emphasizes that the loss function is only

computed for Si = 1. For example, LASSO would use a linear model, f̂(Xi, θ) = Xiθ, and a

quadratic loss function with L2-norm regularization, L(Xiθ, Yi, α) = (Yi −Xiθ)
2 + α||θ||2.

This approach of ignoring sample selection will be valid if the following two condi-

tions hold. First, the selection on observables assumption, equation (3), must hold. Sec-

ond, the modeling space of f̂(Xi, θ) must well approximate the true conditional mean,
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f̂(Xi, θ
∗) = f(Xi) for some θ∗ in the parameter space. If the second condition does not

hold, then the solution to equation (4) does not converge to the true parameters θ∗.9 To cir-

cumvent this issue, an importance probability weighting approach by weighting loss functions

proportional to the inverse of the probability of being in the selected sample will recover the

best approximation when the modeling space does not contain the true conditional mean.

3.2 Importance probability weighting

Zadrozny (2004) showed that even when the modeling space of f̂(Xi, θ) does not well ap-

proximate the true conditional mean, the solution to the weighted loss function

min
θ

n∑
i=1

P (Si = 1)

P (Si = 1|Xi)
SiL

(
f̂(Xi, θ), Yi, α

)
, (5)

will converge to the optimal parameter.10 Importance weighting approaches have been

adapted into many algorithms in the ML literature to address selection on observables with

a major focus on how to estimate the weights. Shimodaira (2000) proposes kernel den-

sity estimation, Zadrozny (2004) and Bickel et al. (2007) focus on classification approaches

to estimate probability of selection, Huang et al. (2006) uses kernel means matching, and

Sugiyama et al. (2007) minimizes the Kullback-Leibler divergence between the test distribu-

tion and the weighted training distribution. However, all of these weighting approaches rely

on the selection on observables assumption (equation (3)) holding.

9Fan et al. (2005) explains that when there is selection on observables, identification of the population

objects of interest depends on whether or not the true conditional distribution lies within the model space.

Wooldridge (2007) similarly shows that under selection on observables, the population minimization problem

for misspecified M-estimators does not identify components of the conditional distribution D(Yi|Xi).

10The optimal parameter under misspecification solves θ = argminθ E
(
L
(
f̂(Xi, θ), Yi

))
.
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3.3 Control function

In the econometrics literature, Heckman (1979) proposes a control function approach to

address selection on unobservables in a linear regression framework. For example, let

Si = 1{g(Xi, Zi, δ) + Vi > 0}, (6)

where Vi ⊥ (Xi, Zi) and Zi are the instruments, attributes that contribute to the sample

selection rule but are irrelevant in the outcome equation.11 The control function approach

assumes E(Ui|Xi, Zi, Si = 1) = E(Ui|g(Xi, Zi, δ)), so the conditional mean of the unobserved

error conditional on selection can be controlled for through the model for the sample selection

process. For example, if (U, V ) was bivariate normal and independent of the attributes,

Heckman (1979) shows

E(Yi|Xi, Zi, Si = 1) = f(Xi) + ρλ(g(Xi, Zi, δ)), (7)

where λ(·) = ϕ(·)/Φ(·) denotes the inverse Mills ratio. He proposes a two-step estimator that

first estimates the parameters δ from the model for the sample selection process, g(Xi, Zi, δ),

and second includes λ̂i = λ(g(Xi, Zi, δ̂)) as an additional covariate in a linear regression to

remove the bias induced by selection on unobservables.

Ahn & Powell (1993), Das et al. (2003), and Newey (2009) (among others) extend his

approach to a distribution-free setting, where they model the conditional mean as

E(Yi|Xi, Zi, Si = 1) = f(Xi) +m(g(Xi, Zi, δ)), (8)

wherem(·) is an unknown function that can be approximated. Letmk(·) = (m1k(·), ...,mkk(·))
be a vector of functions increasing in complexity that approximate m(·), such as polynomials

11Throughout this paper, we assume that the instrument satisfies the exclusion restriction. Without the

exclusion restriction, the two-step Heckman estimator has been shown to perform poorly in terms of param-

eter estimates (Wolfolds & Siegel 2019). Alternative identification strategies such as Chamberlain (1986),

Lewbel (2007), or d’Haultfoeuille & Maurel (2013) could be used instead. We investigate the sensitivity of

the proposed approaches to violations of the exclusion restriction in the supplemental appendix section B.
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or splines.12

For the control function approach, the strength of an instrument, Zi, is crucial to recover

f(Xi). For example, if the instrument does not strongly predict selection, i.e., g(Xi, Z, δ) =

g(Xi, Z
′, δ) for Z ̸= Z ′ in the support, then f(Xi) in the second step is not identified (Leung

& Yu 1996, Puhani 2000). However, the strength of an instrument can be tested in a first

stage.

How to implement a control function for a more general ML algorithm is an open question.

We propose two different implementation approaches inspired by two equivalent control

function approaches in the linear least squares setting. In both approaches, the parameters

δ from the model for the sample selection process, g(Xi, Zi, δ) are estimated in a first stage.

The first approach includes the control function as an additional attribute in the following

minimization

min
γ

n∑
i=1

SiL
(
ĥ([Xi, m̂i], γ), Yi, α

)
, (9)

where m̂i = mk(g(Xi, Zi, δ̂)). In this approach, ĥ([Xi, m̂i], γ) models E(Yi|Xi, Zi, Si = 1)

in equation (8) as a function of both Xi and m̂i. An estimate of f(Xi) is recovered from

ĥ(Xi, 0, γ̂), since E(Yi|Xi, Zi, Si = 1) = f(Xi) when m(g(Xi, Zi, δ)) = 0. If normality is

assumed, as in Heckman (1979), then m̂i can be replaced by λ̂i. We refer to this approach

as the Variable Addition Control Function (CF-VA).

The second approach partials out the control function from the attributes and the out-

come. Let Ỹi = Yi − m̂i(M̂
′M̂)−1M̂ ′Y and X̃i = Xi − m̂i(M̂

′M̂)−1M̂ ′X where M̂ , Y , and

X are the vertical stacking over i of m̂i, Yi, and Xi respectively. Then the partialled out

attributes and outcome are plugged into following minimization

min
θ

n∑
i=1

SiL(f̂(X̃i, θ), Ỹi, α). (10)

We refer to this approach as the Partialled Out Control Function (CF-PO). Similar to the

CF-VA approach, if normality is assumed, then m̂i in the partialling out step can be replaced

by λ̂i.

12Alternatively, Newey (2009) also suggests using series of the inverse Mills function or the normal CDF

evaluated at g(Xi, Zi, δ) as approximations of m(g(Xi, Zi, δ)).
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When estimating a linear regression (f(Xi, θ) = Xiθ) using least squares (L(Xiθ, Yi, α) =

(Yi −Xiθ)
2)), these two approaches result in identical estimates. However, for more general

models and loss functions, these two approaches need not produce the same result. For ex-

ample, if the loss function includes regularization, like in LASSO, then the CF-VA approach

may not select the control function attributes or may shrink their contribution to the predic-

tion and as a result, the bias induced by selection on observables may not be fully removed.13

On the other hand, the CF-PO approach is best suited for linear models (f(Xi, θ) = Xiθ)

where partialling out fully removes the bias induced by selection on unobservables.

We are aware of only two papers that consider these approaches for ML. Zadrozny &

Elkan (2001) use the CF-VA approach with decision trees in the first step and OLS in the

second step while Zhu (2017) advocates the CF-PO approach with LASSO. The next section

investigates the performance of these two CF approaches across ML algorithms with a Monte

Carlo simulation.

4 Simulation

In the simulation, we study the performance of three popular supervised learners for contin-

uous outcomes when there is selection on unobservables: LASSO, random forest, and neural

nets.14 We show for these learners that selection on unobservables increases mean-squared

13A variation on the CF-VA approach would be to “force” the learner to include the CF by not penalizing

its effect. This variation would differ from both the CF-VA and CF-PO approaches. We are grateful to a

referee for pointing this out. However, we find that this variation is not straightforward to implement with

out of the box ML commands in all statistical software. In Stata, this can be implemented using the lasso

command with the (alwaysvars) option. When tested on our application data, we find that this approach

is nearly identical to the CF-VA approach, but we suspect this result is specific to the application data

context. For example, if the CF was unlikely to be selected, it may make a larger difference. We leave it to

future research to more systematically investigate the performance of this third approach.
14We surveyed articles published in the top 5 Economics Journals plus highly rated Econometrics field

journals (Journal of Econometrics, Journal of Applied Econometrics, Journal of Business Economics and

Statistics, and Review of Economics and Statistics) published between 2017 and 2022 that included “Machine

Learn” in the title or abstract. Of the 80 articles recorded, we found that LASSO (21.6%), Random Forest

(16.2%), and Neural Nets (10.8%) were the most popular ML algorithms. For a detailed discussion of these

and other learners refer to Friedman et al. (2009).
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prediction error when ignoring selection (refuting the idea that prediction-is-immune), and

that adding instruments for selection as additional covariates can worsen prediction (refuting

the idea that a smart algorithm can overcome selection). Next, we show that assuming se-

lection is on observables and using a weighting approach can also worsen prediction relative

to simply ignoring selection (refuting the idea that the researcher should do something to

address selection even if the assumptions required are untrue). Finally, we apply the CF-

VA and CF-PO approaches and evaluate their relative performances, finding that CF-PO

performs best in the considered simulation.

We simulate selection on observables and unobservables within the framework described

by equations (1) and (6). We generate 100 attributes, Xi, in the outcome equation drawn

from a standardized multivariate normal distribution with Cov(Xki, Xji) = 0.5|k−j|. The

instrument that determines selection, Zi, is generated from

Zi =
100∑
j=1

0.05Xji + ezi (11)

where ezi is drawn from a N(0, 0.75) resulting in an overall variance of approximately 1.5.

We consider three DGP designs. The outcome in the first design is generated from a

linear model,

f(Xi) =
100∑
j=1

Xjiθj (12)

where θj = 0.4/j2 so there is a squared decay in the importance of the covariates. The

sample selection is generated from a linear index model,

g(Xi, Zi, δ) = 1.25 +
100∑
j=1

Xjiδj + δzZi (13)

where δj = 0.1/(10.5 − j)2) and δz = 1 resulting in a variance of g(Xi, Zi, δ) equal to

approximately 2.3.15 We draw unobserved errors from a bivariate standard normal with

15The first DGP is similar to the designs considered in Belloni et al. (2014) and Bia et al. (2020). A

quadratic decay in the parameter strength means there is not exact sparsity, but the coefficients decay

quickly enough to produce an approximate sparse representation.
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covariances, ρ, that vary from 0 to 0.9. This selection specification results in approximately

85% of the observations being selected into the training sample.

The second DGP uses the same sample selection equation as DGP 1 but introduces a

more complex relationship between Yi and Xi:

f(Xi) = −0.25 + 1.25 ∗ sin(π/4 + 0.75π
100∑
j=1

Xjiθj) (14)

where π is the mathematical constant equal approximately to 3.14. We again draw the

unobserved errors from a bivariate standard normal distribution with covariances varying

from 0 to 0.9.

The third DGP investigates the consequence of using a weak instrument. In this DGP,

the outcome and sample selection are generated the same as DGP 1 but δz = 0.001 and has

a first stage F -statistic of approximately 0.15.

Each simulation draws 25,000 observations where on average 20,000 observations are

selected into the training sample and 5,000 observations have an unobserved outcome. We

train learners on the sample-selected training data ({(Yi,Wi) : Si = 1}) and predict outcomes

on separately drawn data of sample size 5,000 that is not subject to sample selection.

For each learner, we use off-the-shelf versions from the Statistics and Machine Learning

Toolbox for MATLAB R2022a.16 We believe that most applied researchers utilize the off-the-

shelf versions of the ML algorithms so our analysis is most useful in that context. For all the

considered ML algorithms, we select nuisance parameters using 5-fold cross validation.17 We

16We obtain LASSO estimates using the fitrlinear function with the least squares learner and the

LASSO regularization. We obtain random forest estimates using the fitrensemble function with the bagging

method, with 100 bins for the continuous predictors, and 300 learning cycles. MATLAB recommends binning

continuous predictors to save on computational time. We also chose a relatively high number of learning

cycles as increasing the number of learning cycles does not not result in over-fitting (Friedman et al. 2009,

pg. 596). The trees have a minimum leaf size of 1 and the maximum number of splits is the number of

observations minus 1. The neural net estimates are obtained using the fitrnet function with two fully

connected hidden layers, each of size 50. (Friedman et al. 2009, pg. 400) recommends to specify relatively

large layers and then allow for regularization.
17Nuisance parameters are the regularization parameter λ for LASSO, number of predictor variables to

sample for each cycle of the random forest, and the regularization parameter λ for neural nets.
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then train each learner with each of the following strategies to addressing sample selection:

1. Ignore Sample Selection (1): Only attributes Xi are included in the unweighted loss

function in equation (4).

2. Ignore Sample Selection (2): The attributes Xi, instruments Zi, Z
2
i , and interactions

between Xi and Zi are included in the unweighted loss function in equation (4).

3. Weighted: Both the attributes Xi and the instruments Zi are used to estimate weights,

then only Xi is included in the loss function in equation (5).

4. CF-VA: Both the attributes Xi and the instruments Zi are used to estimate the proba-

bility of selection, then the control function is included as an additional attribute with

Xi in the loss function in equation (9).

5. CF-PO: Both the attributes Xi and the instruments Zi are used to estimate the prob-

ability of selection, then the control function is partialled out of the attributes Xi and

outcome Yi, which are used in the loss function in equation (10).

For both the weighted and CF approaches, the probability of selection, P (Si = 1|Xi, Zi),

needs to be estimated in a first stage. We estimate the probability of selection using an L1-

penalized Probit,18 where the regularization parameter is determined through 5-fold cross-

validation.

4.1 Simulation results

[Figure 2 about here]

18Both the weighted and CF approaches can be sensitive to poor estimation of the probability of selection.

Sugiyama et al. (2007) and Sugiyama et al. (2008b) show the sensitivity of the weighting approach to

different weight estimation approaches while there is mixed results for the CF estimators. Arabmazar &

Schmidt (1982) and Goldberger (1983) show the sensitivity of the CF estimators to incorrect distributional

assumptions while Schaffner (2002) and Van der Klaauw & Koning (2003) find the CF estimators to be

quite robust to distributional misspecification if the sample selection mechanism is modelled flexibly (e.g.,

including quadratic terms). To isolate the sensitivity to the selection on observables assumption, we have a

correctly specified estimator for the probability of selection for the weights and use the correctly specified

inverse Mills ratio for the control function. In the supplemental appendix section B, we investigate the

performance of the CF approaches under distributional misspecification.
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Figure 2 displays the mean squared prediction errors for the ignoring sample section and

weighting approaches. Panel (a) displays MSPE for the first DGP, panel (b) for the second

DGP, and panel (c) for the third DGP. We compare MSPE to an unbiased baseline equal to

the median MSPE of the Ignore SS(1) prediction when ρ = 0. All three approaches rely on

the selection on observables assumption which only holds when ρ = 0.

We identify three main takeaways. First, the presence of selection on unobservables

degrades prediction quality, contradicting the prediction-is-immune fallacy. As the level

of selection on unobservables increases (i.e., for greater values of ρ), both ignoring sample

selection and weighting for selection on observables perform worse relative to the selection

on observables benchmark.

Second, we find that including the instrument Zi as an attribute in the outcome equation

(Ignore SS(2)) does not help and in some cases is a detriment in terms of prediction quality

(compared to Ignore SS(1)). This refutes the smart-algorithm fallacy because ML algorithms

can actually misappropriate the effects of the instrument, Zi, as a strong predictor of the

outcome while in reality it is only relevant in the selection equation. This appears to have a

particularly strong impact for neural nets, where even when selection on observables holds,

including the instrument as an attribute has detrimental effects on prediction.

Third, contrary to the do-something fallacy, weighting does not necessarily produce better

MSPE compared to ignoring sample selection when there is selection on unobservables. This

is contrary to the statements in Huang et al. (2006) which suggests weighting approaches may

still offer prediction improvements under selection on unobservables. This result is consistent

with Wooldridge (2007) who showed that weighting estimators will be inconsistent when the

estimated probability weights depend on the wrong predictors of selection (in this case only

Xi and Zi but not Yi).

[Figure 3 about here]

Figure 3 reports the MSPE results for out of sample prediction performance of the two

CF approaches as well as the Ignore SS (1) as a comparison. Panel (a) displays MSPE

for the first DGP, panel (b) for the second DGP, and panel (c) for the third DGP. The

results suggest two main takeaways. First, the performance of the CF approaches relative

to ignoring sample selection varies with the level of selection on unobservables. For low

18



correlation, the CF approaches perform similarly to ignoring sample selection, but as the

correlation increases, both CF approaches perform better than ignoring sample selection in

all of the DGPs and learners considered. In particular, the CF-PO approach tends to be fairly

flat across all levels of correlation. This implies that the CF-PO approach is appropriately

capturing the effect of selection on unobservables as correlation increases.

Second, in all considered settings, the CF-PO approach performs similarly across all

levels of correlation with the smallest MSPE, while in some settings, the CF-VA approach

offers little improvement over Ignore SS (1). Specifically, in DGP3 where the instrument is

weak, the CF-VA approach does not provide much improvement over Ignore SS (1) while the

CF-PO approach still manages to remove the bias due to selection on unobservables. This is

likely because with a weak instrument, the control function is highly multicollinear with the

included attributes which means the algorithm shrinks or prunes the CF’s corrective effect

in the CF-VA approach. Consequently, the CF-PO approach generally performs just as well

and in some instances much better than CF-VA approach in terms of MSPE.

Additional simulations are included in the appendix that further investigate the perfor-

mance of the CF methods when the instrument is invalid and errors are not normal. We find

that the control function approach performs surprisingly well given the considered types of

misspecifications and simulation context.

5 Incumbent election application

[Figure 4 about here]

We apply the approaches to correcting for sample selection to predicting the hypothetical

gubernatorial election outcomes for incumbent governors who do not run again. Modeling

election outcomes is a common goal for pure forecasting purposes (see e.g., Kennedy et al.

2017) as well as estimation of causal parameters (see e.g., Stegmaier et al. 2017). For

instance, a practitioner may be interested in hypothetical election outcomes to aid an in-

cumbent’s decision to enter the race, or a practitioner may be interested in the hypothetical

counterfactual election outcome if an incumbent had run for re-election rather than retiring.

We consider the latter, seeking to understand the role of selection in determining incum-
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bency advantage, using variation in term limits as the instrument for selection.19 Scholars

argue that name recognition, ability to raise funding, and ability to discourage entry of qual-

ity challengers provides an “incumbency advantage” in elections (Levitt & Wolfram 1997,

Ashworth & Bueno de Mesquita 2008, Gowrisankaran et al. 2008, Hall & Snyder Jr 2015,

Lopes da Fonseca 2017). Figure 4 plots the distribution of the incumbent’s vote share and

major-party non-incumbent candidate shares for U.S. gubernatorial elections from 1972-2010

(CQ Press 1967-2019), clearly showing the relative success of incumbents.

In response to the apparent incumbency advantage, term limits are often seen as necessary

to increase the competitiveness of elections. However, the success of incumbents in observed

prior elections is a misleading estimate of the expected success of an incumbent who has

not yet made the decision to run again. Prior elections where the incumbent is present are

fundamentally different from open-seat elections due to the incumbent’s endogenous choice

to run again for election. Thus, there is a selection process so that every incumbent election

available in the training data is conditional upon the incumbent’s willing participation.

We are interested in training a learner to predict the log odds of the vote share Yi,j of

the incumbent i in county j as a function of the incumbent’s performance in the previous

term Xi,j.
20 The training data of prior elections featuring the incumbent are only observed

when the incumbent chooses to run again. Thus, we model the incumbent’s participation and

subsequent vote share to understand how selection into the training set influences prediction.

To simplify notation, we suppress the county subscript j.

Participation in an election is costly. When considering a potential repeat run for gov-

ernor, the incumbent i compares the expected payoff of the campaign with the value of

his or her outside option εi, which we assume is ⊥ (Xi, Zi), where Zi is a binary variable

that is equal to one for a governor who was subject to a term limit, which is an instrument

for selection. The expected payoff is the incumbent’s payoff from winning πw or losing πl

weighted by the incumbent’s belief about the likelihood of winning B(Xi, Ui). Without loss

of generality, we normalize the payoff of losing to zero, πl = 0. The incumbent’s belief about

19Besley & Case (1995), Escaleras & Calcagno (2009), and Alt et al. (2011) use variation in term limits

to study gubernatorial quality, expenditures, and shirking.
20We model the log odds of the vote share because the off-the-shelf ML algorithms we consider are designed

for continuous dependent variables rather than a limited dependent variable like vote share.
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the likelihood of winning is based on observed public information about the incumbent’s

past performance Xi and unobserved (potentially private) information Ui.

We can write the incumbent’s participation decision as a binary variable Si that is equal

to one if the expected payoff net of the barrier to entry exceeds the value of the outside

option, Si = 1 {B(Xi, Ui)πw − δZZi − εi > 0}. We model the candidate’s beliefs as linear

in parameters with a separable error term so that B(Xi, Ui)πw = δXXi + πwUi where the

parameter β encompasses both the payoff of winning and the marginal effect of past perfor-

mance on belief of winning. Thus, we model the incumbent’s participation decision in the

first stage as Si = 1 {βXi − δZZi + Vi > 0}, where we assume Vi = πwUi − εi is normally

distributed.

For a potential election, the log odds of the vote share of the incumbent is a latent

variable Yi = f(Xi) + Ui that is a function of the incumbent’s past performance Xi and

other unobserved information Ui. Yi is only observed when the incumbent chooses to run.

Thus, the training data Yi are determined by a process that matches the canonical sample

selection framework introduced in equations 1-6. The unobserved error Ui is present in both

the model for the outcome of interest and the model for the participation (and selection)

decision, E(Yi|Xi, Si = 1) ̸= E(Yi|Xi), a clear case of selection on unobservables. The only

training examples we observe are for past cases where the incumbent decided the expected

payoff exceeded the costs—potentially due to unobserved private information Ui that affects

the vote share of the incumbent.

5.1 Data

We study US state gubernatorial elections from 1972-2010. Our data on county election

returns comes from the Voting and Elections Collection maintained by the CQ Press (1967-

2019). We include all elections for which county returns are available, resulting in a sample of

502 state-level races (county returns are not available for Alaska, and Virginia does not allow

incumbents to run again so these states are not included). The election returns data includes

the presence of the incumbent and tallies of the number of votes for candidates by county.

Figure 4 plots the distribution of the incumbent’s vote share and major-party non-incumbent

candidate shares, clearly showing the relative success of gubernatorial incumbents.
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A broad range of county-level economic conditions serve as attributes that may predict

the incumbent’s county vote share. Economic conditions come from the Economic Profile by

County series compiled by the US BEA (1969-2017).21 We include election-year and two-year

lags of county-level population, employment, and total and per-capita income. Employment

is divided into wage and salary, farm proprietors, and non-farm proprietors. Income is divided

into total and per-capita earnings, wage and salary income, dividends and interest income,

farm proprietors’ income, non-farm proprietors’ income, employer retirement contributions,

employer pension contributions, employer social security contributions, unemployment in-

surance, and welfare. We include state and presidential-election-cycle indicators.

The term limit variable serves as the excluded variable Zi that affects whether the incum-

bent runs again, but does not affect the incumbent’s vote share. Term limits and succession

data come from the Klarner Governor’s Dataset 2013, the Rutgers Center on the American

Governor list of gubernatorial elections (McDowell 1948-2013), the Council of State Govern-

ment’s Book of the States information on historical state term-limits (The Council of State

Governments 1960-2019), Ballotpedia (1969-2019), and the National Governors Association

(1969-2019). The right panel of figure 4 shows the number of incumbent and open races

per election cycle as well as the reason the incumbent did not run. In the final sample,

the incumbent is present in 56 percent of races. Of open races, 54 percent are due to term

limits and the remaining 46 percent are due to the incumbent’s choice. In two cases of our

sample, an existing term limit is eliminated or changed to allow the sitting governor to run

again—thus, we classify a governor as term limited based on the presence of a binding term

limit when the term begins.22 In a sense, we define the term limit assignment as an “intent

to treat,” allowing us to avoid any manipulation of the term limit correlated with unobserved

or private information correlated with the vote share.

The unit of observation is a county-level election. The final sample includes 30,940

county-level observations from 512 elections after generating lagged variables. Appendix ta-

ble A1 displays summary statistics for open and incumbent races. The sample includes 217

21We chain all dollar amounts to 2000 using the Consumer Price Index (US BLS 1950-2020) and standardize

the attributes so that each is in units of the z-score.
22An amendment to the 1976 Georgia State Constitution and a 1980 ballot initiative in South Carolina

allowed the sitting term-limited governors to run again.
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open races (representing 12,895 county-race observations) and 285 incumbent races (repre-

senting 17,095 county-race observations). We train our algorithms using the incumbent races

and use information from the open and incumbent races to generate the control function.

The feature space includes 239 potential attributes. Most earnings and employment statistics

are balanced across the groups, but open races are associated with greater unemployment

payments and entry of third-party challengers.

5.2 Results

[Figure 5 about here.]

In the first stage, we use an L1-penalized Probit to generate the weights for the weight-

ing approach and the control function for CF-PO. The excluded instrument Zi, whether the

incumbent is term-limited, is highly relevant for prediction. When we increase the penal-

ization term (λ) to increase the number of parameters excluded from the Probit model, the

term limit variable is the last to drop out. We estimate and report the post-selection coef-

ficients and standard errors in table 2 in the supplemental appendix. The LASSO-selected

coefficients have the expected signs—term limits, presence of a third party challenger, and

greater unemployment insurance payments per capita are correlated with the incumbent not

seeking re-election.

To understand how the different approaches affect prediction, we plot the predicted vote

shares when ignoring selection versus the predicted vote shares using the weighted and CF-

PO approach. We display the results in terms of vote share rather than log odds for ease

of interpretation.23 The predictions using the weighting approach are plotted against the

predictions ignoring sample selection in the top row of figure 5. If the weighting approach

predicts a higher vote share, the points will lie above the y = x line, and vice-versa. From the

figures, it is clear that weighting changes the prediction patterns, with a slight favor towards

increasing the predicted vote share relative to ignoring selection. This runs counter to our

hypothesis that selection would cause prediction to be biased towards overly favorable vote

shares if better-performing candidates choose to run for re-election more often. The bottom

23We re-transform the predictions using the non-parametric smearing estimator (Duan 1983).
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row of figure 5 plots the predicted vote share when correcting for selection on unobservables

using the CF-PO approach versus the predicted vote share when ignoring selection. These

figures show that when correcting for selection on unobservables using the CF-PO approach,

the predicted vote shares are lower relative to ignoring selection. This finding confirms the

hypothesis that selection would cause prediction to be biased toward high vote shares.

We present the mean-squared prediction errors estimated from the training sample in

table 3 in the supplementary appendix. Both weighting and using the CF-PO methods had

ambiguous effects on the mean-squared prediction errors within the training sample. Weight-

ing and CF-PO worsened the cross-validation fit for the LASSO algorithm but improved the

fit for the random forest and neural net algorithms. We caution that it is difficult to interpret

these changes to the MSPE in the training data to understand which algorithm will perform

better in the prediction data because both weighting and CF-PO may worsen the fit within

the training sample while improving the fit out of sample.

Finally, we use the predictions to forecast whether the incumbent would have received

more than 50 percent of the vote at the state level in each election in which the incumbent

did not run again. To do so, we used the predicted incumbent vote share for each county

and aggregated to the state level by assuming an average turnout for each county based on

historic turnout rates. Figure 6 plots the results by algorithm and by approach to selection.

Ignoring selection or merely addressing selection on observables would lead us to predict

the incumbent receiving the majority of votes more often using each algorithm. The neural

net is particularly strongly affected by the approach to selection bias whereas random forest

is somewhat less affected—a result consistent with the findings of the simulation exercises.

These differences are practically meaningful—addressing selection on unobservables in the

neural net case reduces the proportion of predicted incumbent wins by seven percentage

points relative to ignoring selection and nine percentage points relative to the weighted

approach, which is large considering a predicted incumbent win rate of about 32% when

ignoring selection.

[Figure 6 about here.]
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6 Conclusion

Contrary to popular belief, we show that for ML algorithms, selection on unobservables ad-

versely affects prediction and cannot be solved by weighting schemes designed for selection

on observables. More optimistically, we show that partialling out a control function term be-

fore training the ML algorithm can improve predictive performance, particularly at medium

and high levels of selection. Merely including the control function as an additional covariate

is less effective due to variable selection and shrinkage in the ML algorithms. In the context

of our simulations, we show that it is important for the researcher to a priori determine the

roles of the attributes as either variables that affect the outcome and selection mechanism

or variables that only affect the selection mechanism. We show that treating both selection

and outcome variables the same will result in poor prediction quality.

Our empirical application demonstrates that accounting for selection on unobservables

can substantially change prediction results. When training ML learners to predict the vote

share of the incumbent, addressing selection on unobservables reduces the proportion of

predicted incumbent wins by as much as seven percentage points relative to ignoring selection

and nine percentage points relative to the weighted approach, which is large compared to an

average predicted incumbent win rate of 32% when ignoring selection. These findings are

consistent with incumbents choosing to run again when the probability of success is greater.

This paper provides a preliminary exploration into selection on unobservables with ML

procedures, but there are still many questions left unanswered for further research. For

example, although we provide intuition as well as simulation to examine prediction quality,

we do not derive proper inference for these approaches. Moreover, we only investigated

the performance of the three most commonly used ML algorithms in economics research.

Additional investigation on the performance of other ML algorithms could be warranted.

Finally, we considered a regression setting where the outcome is continuous. Since many data

applications have binary or discrete outcomes, determining how control function approaches

could be implemented with classification ML algorithms is an important next step.
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Bia, M., Huber, M. & Lafférs, L. (2020), Double machine learning for sample selection

models, Papers 2012.00745v5, arXiv.org. https://arxiv.org/abs/2012.00745.

Bickel, S., Brückner, M. & Scheffer, T. (2007), Discriminative learning for differing training

and test distributions, in ‘Proceedings of the 24th international conference on Machine

learning’, pp. 81–88.

Chamberlain, G. (1986), ‘Asymptotic efficiency in semi-parametric models with censoring’,

Journal of Econometrics 32(2), 189–218.

CQ Press (1967-2019), ‘Voting and elections collection’. Governor election returns, county

detail by year, http://library.cqpress.com/elections/download-data.php, accessed 05-2020.

Das, M., Newey, W. K. & Vella, F. (2003), ‘Nonparametric estimation of sample selection

models’, The Review of Economic Studies 70(1), 33–58.

Duan, N. (1983), ‘Smearing estimate: A nonparametric retransformation method’, Journal

of the American Statistical Association 78(383), 605–610.

d’Haultfoeuille, X. & Maurel, A. (2013), ‘Another look at the identification at infinity of

sample selection models’, Econometric Theory 29(1), 213–224.

Escaleras, M. & Calcagno, P. (2009), ‘Does the gubernatorial term limit type affect state

government expenditures?’, Public Finance Review 37(5), 572.

Fan, W., Davidson, I., Zadrozny, B. & Yu, P. S. (2005), An improved categorization of

classifier’s sensitivity on sample selection bias, in ‘Fifth IEEE International Conference on

Data Mining’, IEEE.

27

https://www.nber.org/papers/t0343
https://arxiv.org/abs/2012.00745
http://library.cqpress.com/elections/download-data.php


Farrell, M. H., Liang, T. & Misra, S. (2021), Deep learning for individual het-

erogeneity: An automatic inference framework, Papers 2010.14694v2, arXiv.org.

https://arxiv.org/abs/2010.14694v2.

Feng, Y. et al. (2021), Causal inference in possibly nonlinear factor models, Papers

2008.13651v3, arXiv.org. https://arxiv.org/abs/2008.13651v3.

Friedman, J., Hastie, T. & Tibshirani, R. (2009), The elements of statistical learning: data

mining, inference, and prediction, Vol. 2, Springer: New York, NY.

Ghalebikesabi, S., Cornish, R., Holmes, C. & Kelly, L. (2021), Deep generative missingness

pattern-set mixture models, in ‘The 24th International Conference on Artificial Intelligence

and Statistics’, pp. 3727–3735.

Goldberger, A. S. (1983), Abnormal selection bias, in ‘Studies in econometrics, time series,

and multivariate statistics’, Elsevier, pp. 67–84.

Gong, Y., Hajimirsadeghi, H., He, J., Durand, T. & Mori, G. (2021), Variational selective

autoencoder: Learning from partially-observed heterogeneous data, in ‘The 24th Interna-

tional Conference on Artificial Intelligence and Statistics’, pp. 2377–2385.

Gowrisankaran, G., Mitchell, M. F. & Moro, A. (2008), ‘Electoral design and voter wel-

fare from the us senate: Evidence from a dynamic selection model’, Review of Economic

Dynamics 11, 1–17.

Hall, A. & Snyder Jr, J. (2015), ‘How much of the incumbency advantage is due to scare-off?’,

Political Science Research and Methods 3(3), 493–514.

Heckman, J. (1979), ‘Sample selection bias as a specification error’, Econometrica 47(1), 153–

161.

Hirano, K., Imbens, G. W. & Ridder, G. (2003), ‘Efficient estimation of average treatment

effects using the estimated propensity score’, Econometrica 71(4), 1161–1189.

Huang, J., Gretton, A., Borgwardt, K., Schölkopf, B. & Smola, A. (2006), Correcting sample

selection bias by unlabeled data, in ‘Advances in Neural Information Processing Systems

19’.

28

https://arxiv.org/abs/2010.14694v2
https://arxiv.org/abs/2008.13651v3


Hünermund, P., Louw, B. & Caspi, I. (2021), Double machine learning and bad controls–a

cautionary tale, Papers 2108.11294, arXiv.org. https://arxiv.org/abs/2108.11294.

Ipsen, N. B., Mattei, P.-A. & Frellsen, J. (2021), not-miwae: Deep generative modelling

with missing not at random data, in ‘The 2021 International Conference on Learning

Representations’.

Kennedy, R., Wojcik, S. & Lazer, D. (2017), ‘Improving election prediction internationally’,

Science 355(6324), 515–520.

Klarner, C. (2013), ‘Governors dataset’. https://doi.org/10.7910/DVN/PQ0Y1N, accessed

05-2020.

Kleinberg, J., Ludwig, J., Mullainathan, S. & Obermeyer, Z. (2015), ‘Prediction policy

problems’, American Economic Review Papers & Proceedings 105(5), 491–95.

Leung, S. F. & Yu, S. (1996), ‘On the choice between sample selection and two-part models’,

Journal of Econometrics 72(1-2), 197–229.

Levitt, S. & Wolfram, C. (1997), ‘Decomposing the sources of incumbency advantage in the

U.S. house’, Legislative Studies Quarterly 22(1), 45–60.

Lewbel, A. (2007), ‘Endogenous selection or treatment model estimation’, Journal of Econo-

metrics 141(2), 777–806.

Lopes da Fonseca, M. (2017), ‘Identifying the source of incumbency advantage through a

constitutional reform’, American Journal of Political Science 61(3), 657–670.

Ma, C. & Zhang, C. (2021), Identifiable generative models for missing not at random data

imputation, in ‘Advances in Neural Information Processing Systems 34’, pp. 27645–27658.

McDowell, C. (1948-2013), ‘Gubernatorial elections’. http://governors.rutgers.edu/testing/wp-

content/uploads/2014/09/Incumb Chart Word 2013.pdf, accessed 06-2020.

Mullainathan, S. & Spiess, J. (2017), ‘Machine learning: An applied econometric approach’,

Journal of Economic Perspectives 31(2), 87–106.

29

https://arxiv.org/abs/2108.11294
https://doi.org/10.7910/DVN/PQ0Y1N
http://governors.rutgers.edu/testing/wp-content/uploads/2014/09/Incumb_Chart_Word_2013.pdf
http://governors.rutgers.edu/testing/wp-content/uploads/2014/09/Incumb_Chart_Word_2013.pdf


National Governors Association (1969-2019), ‘Former governors’.

https://www.nga.org/former-governors/, accessed 06-2020.

Newey, W. K. (2009), ‘Two-step series estimation of sample selection models’, The Econo-

metrics Journal 12(S1), S217–S229.

Puhani, P. (2000), ‘The heckman correction for sample selection and its critique’, Journal

of Economic Surveys 14(1), 53–68.

Robins, J. M., Rotnitzky, A. & Zhao, L. P. (1995), ‘Analysis of semiparametric regression

models for repeated outcomes in the presence of missing data’, Journal of the American

Statistical Association 90(429), 106–121.

Rosenbaum, P. R. (1987), ‘Model-based direct adjustment’, Journal of the American Statis-

tical Association 82(398), 387–394.

Schaffner, J. A. (2002), ‘Heteroskedastic sample selection and developing-country wage equa-

tions’, Review of Economics and Statistics 84(2), 269–280.

Schnabel, T., Swaminathan, A., Singh, A., Chandak, N. & Joachims, T. (2016), Recom-

mendations as treatments: Debiasing learning and evaluation, in ‘The 33rd International

Conference on Machine Learning’, pp. 1670–1679.

Shimodaira, H. (2000), ‘Improving predictive inference under covariate shift by weighting

the log-likelihood function’, Journal of Statistical Planning and Inference 90(2), 227–244.

Steck, H. (2010), Training and testing of recommender systems on data missing not at

random, in ‘The 16th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining’, pp. 713–722.

Stegmaier, M., Lewis-Beck, M. S. & Park, B. (2017), The VP-Function: A Review, in

K. Arzheimer, J. Evans & M. S. Lewis-Beck, eds, ‘The SAGE Handbook of Electoral B

Behaviour’, Vol. 2, SAGE Publications Ltd, 55 City Road, London, chapter 25, pp. 584–

605.

30

https://www.nga.org/former-governors/


Sugiyama, M., Nakajima, S., Kashima, H., Buenau, P. V. & Kawanabe, M. (2007), Direct

importance estimation with model selection and its application to covariate shift adapta-

tion, in ‘Advances in Neural Information Processing Systems 20’.

Sugiyama, M., Suzuki, T., Nakajima, S., Kashima, H., von Bünau, P. & Kawanabe, M.

(2008b), ‘Direct importance estimation for covariate shift adaptation’, Annals of the In-

stitute of Statistical Mathematics 60(4), 699–746.

The Council of State Governments (1960-2019), ‘The book of the states’.

http://knowledgecenter.csg.org/kc/category/content-type/content-type/book-states,

accessed 06-2020.

US BEA (1969-2017), ‘Economic profile by county (CAINC30)’. Regional Economic Ac-

counts, https://apps.bea.gov/regional/downloadzip.cfm, accessed 03-2019.

US BLS (1950-2020), ‘CPI for all urban consumers (CPI-U)’.

https://data.bls.gov/timeseries/CUUR0000SA0, accessed 07-2020.

Van der Klaauw, B. & Koning, R. H. (2003), ‘Testing the normality assumption in the sample

selection model with an application to travel demand’, Journal of Business & Economic

Statistics 21(1), 31–42.

Varian, H. R. (2014), ‘Big data: New tricks for econometrics’, Journal of Economic Perspec-

tives 28(2), 3–28.

Vella, F. (1998), ‘Estimating models with sample selection bias: a survey’, Journal of Human

Resources 33(1), 127–169.

Wang, X., Zhang, R., Sun, Y. & Qi, J. (2019), Doubly robust joint learning for recommen-

dation on data missing not at random, in ‘The 36th International Conference on Machine

Learning’, pp. 6638–6647.

Wolfolds, S. E. & Siegel, J. (2019), ‘Misaccounting for endogeneity: The peril of relying on

the heckman two-step method without a valid instrument’, Strategic Management Journal

40(3), 432–462.

31

http://knowledgecenter.csg.org/kc/category/content-type/content-type/book-states
https://apps.bea.gov/regional/downloadzip.cfm
https://data.bls.gov/timeseries/CUUR0000SA0


Wooldridge, J. M. (2002), ‘Inverse probability weighted m-estimators for sample selection,

attrition, and stratification’, Portuguese Economic Journal 1(2), 117–139.

Wooldridge, J. M. (2007), ‘Inverse probability weighted estimation for general missing data

problems’, Journal of Econometrics 141(2), 1281–1301.

Wooldridge, J. M. (2016), ‘Should instrumental variables be used as matching variables?’,

Research in Economics 70(2), 232–237.

Zadrozny, B. (2004), Learning and evaluating classifiers under sample selection bias, in ‘The

21st International Conference on Machine Learning’.

Zadrozny, B. & Elkan, C. (2001), Learning and making decisions when costs and probabilities

are both unknown, in ‘The Seventh ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining’, pp. 204–213.

Zadrozny, B., Langford, J. & Abe, N. (2003), Cost-sensitive learning by cost-proportionate

example weighting, in ‘Third IEEE International Conference on Data Mining’, pp. 435–

442.

Zhang, W., Bao, W., Liu, X.-Y., Yang, K., Lin, Q., Wen, H. & Ramezani, R. (2020), Large-

scale causal approaches to debiasing post-click conversion rate estimation with multi-task

learning, in ‘The Web Conference 2020’, pp. 2775–2781.

Zhu, Y. (2017), ‘Nonasymptotic analysis of semiparametric regression models with high-

dimensional parametric coefficients’, The Annals of Statistics 45(5), 2274–2298.

32



(a) Original DGP (b) New DGP

Boxplot of mean squared prediction error for 30 simulated draws of the breast cancer data from UCI following
(a) the Huang et al. (2006) data generating process and (b) an alternative data generating process.

Figure 1: Replication of simulation from Huang et al. (2006).
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(a) DGP1

(b) DGP2

(c) DGP3

Compares MSPE for weighted and un-weighted approaches to sample selection with error bars
corresponding to 10th and 90th percentiles across simulations for (a) DGP1 , (b) DGP2, and (c) DGP3.

Figure 2: Weighted and un-weighted approaches to sample selection.
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(a) DGP1

(b) DGP2

(c) DGP3

Compares MSPE for Heckman CF approaches to sample selection with error bars corresponding to 10th and
90th percentiles across simulations for (a) DGP1 , (b) DGP2, and (c) DGP3.

Figure 3: CF approaches to sample selection.
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Figure 4: Gubernatorial elections.

36



(a)

(b)

Plots predicted vote shares for each out-of-sample county race ignoring selection versus using the (a) weight-
ing method to address selection on observables or (b) using the CF-PO method to address selection on
unobservables.

Figure 5: Predicted vote share by method.
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