
Addressing Sample Selection Bias for Machine Learning

Methods: Supplemental Appendix

Dylan Brewer∗ and Alyssa Carlson†

June 29, 2023

Appendix A considers an alternative prediction goal than what was considered in “Ad-

dressing Sample Selection Bias for Machine Learning Methods.” In the main paper, the goal

is to predict for a sample unaffected by the sample selection mechanism. Here we consider

the case in which predicting the unobserved sample (Si = 0) is the goal.

Appendix B investigates the sensitivity of the CF approaches to their underlying selection

assumption. We provide simulations for when the instrument is not excluded and the errors

are not normally distributed.

Appendix C contains supplementary tables for the application.

A Predicting the unobserved sample

Beginning with the same sample-selection framework from the main paper:

Yi = f(Xi) + Ui (1)

Si = 1{g(Xi, Zi, δ) + Vi > 0} (2)

where Yi is only observed in the training sample when Si = 1. When considering the setting

of a selected sample for training, there are three possible applications of the trained learners.
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The first case is a prediction sample conditional on Si = 1, in this cases, sample selection

does not effect the quality of prediction as the training sample and prediction sample are

selected the same way. The second case, considered in the main paper, is when the prediction

sample is unbiased and unaffected by sample selection. The last case is when the prediction

sample is the unobserved sample in which Si = 0. In this case, the training sample is biased

due to selection into the training sample, while the prediction sample is also biased due to

selection out of the training sample.

So how does the analysis of the paper, which focuses on prediction for an unbiased

sample, change when we are instead interested in predicting the unobserved sample? We

find that there are some nuanced differences between predicting an unbiased sample and the

unobserved sample, especially with respect to implementation, which requires the researcher

to recognize predicting the unobserved sample should not be treated as the same predicting

an unbiased sample. We also apply the methods in simulation and find very similar patterns

and conclusions from the main paper result.

A.1 Strategies to address selection on unobservables

In this section, we outline how the importance weighting and control function procedures

can be altered to predict the unobserved sample.

When considering predicting the unobserved, the loss function for the importance weight-

ing approach must be altered slightly.

argmin
θ

n∑
i=1

1− P (Si = 1|Xi)

P (Si = 1|Xi)
SiL

(
f̂(Xi, θ), Yi, α

)
(3)

where in place of P (Si = 1) in the numerator, we have the probability of being unobserved,

P (Si = 0|Xi) = 1− P (Si = 1|Xi).

This means, that instead of re-weighting just by the inverse of the probability of being

observed, we also weight by the probability of being part of the prediction sample (unob-

served). Intuitively, this is utilizing the information that the prediction sample was unob-

served, Si = 0, which adds more information to the prediction process.

By weighting the sample by the inverse of the proportion of be observed, we are informing
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the algorithm which observations are more important to use for training (because they were

under-sampled) versus those we should not place a lot of importance to (because they are

over-sampled). By also weighting by the proportion of being part of the prediction sample

(unobserved), we are telling the algorithm how likely we will see a similar observation in the

prediction sample and therefore we should place more importance on that observation.

When applying the two CF methods, CF-VA and CF-PO, changing from predicting an

unbiased sample to predicting the unobserved, the training process does not change. This

means the calculation of the control function (inverse Mills ratio) and the implementation

of the CF methods (either variable addition or partialling out) stays the same. The notable

difference in predicting the unobserved sample is how we apply the trained learner to the

prediction set to obtain the best possible prediction outcome.

For example, if we are interested in predicting an unbiased sample, as done in the main

paper, then the best predictor (in the mean-squared-error sense) is the conditional mean,

E(Yi|Xi, Zi) = f(Xi)

whereas, if we are interested in obtaining predictions of the unobserved, then the best pre-

dictor is still the conditional mean,

E(Yi|Xi, Zi, Si = 0) = f(Xi) + E(Ui|Xi, Zi, Si = 0) (4)

but we can condition on the knowledge that the outcome is unobserved in the training sample.

This adds information and predictive power. The second term in the above conditional mean

can be derived based on the model assumptions. For example, When assuming the errors

are jointly normal and independent of the features, then

E(Ui|Xi, Zi, Si = 0) = −ρλ(−g(Xi, Zi, δ)) (5)

where λ(·) is the inverse Mills ratio. By incorporating the information from the control func-

tion when predicting the unobserved sample, we can achieve additional gains in predictive

accuracy. How this is executed, depends on which CF approach is applied.

First let us understand how this effects CF-VA approach. Recall that these learners
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estimate the following population object

E(Yi|Xi, Zi, Si = 1) = f(Xi) + ρλ(g(Xi, Zi, δ)) (6)

where we use ĥ([Xi, λ̂i], γ) to model E(Yi|Xi, Zi, Si = 1) in equation (6) as a function of

both Xi and λ̂i = λ(ĝ(Xi, Zi, δ̂) where δ̂ is estimated in a first stage. Then in this case,

an estimate of E(Yi|Xi, Zi, Si = 0) is recovered from ĥ(Xi,−λ(−ĝ(Xi, Zi, δ̂)), γ̂). We expect

that the inclusion of the second term adds information to the learner and could possibly

result in a more accurate predictor, even compared to an unbiased baseline.

Unlike the CF-VA approach, applying the CF-PO approach to predicting the unobserved

sample requires several steps for implementation. Recall that X̃i and Ỹi denote the partialled

out attributes and outcome respectively. Then the learners are estimating E(Ỹi|X̃i, Si =

1) with f̂(X̃i, θ) where f̂(·, θ) is an approximation to the conditional mean function f(·)
following linear projection arguments.

To apply the learner to predict in an unbiased sample we use, f̂(Xi, θ̂). Note that when

using the learner for prediction we evaluate using the un-partialled out attributes. The

partialled out random variables can be thought of as the sample selection bias adjusted

random variables: adjusted as if there was no selection on unobservables.

To predict in the unobserved sample, we would like to incorporate the information cap-

tured by E(Ui|Xi, Zi, Si = 0) in equation (4). Implementation of this takes several steps

after training the learner and requires model assumptions to derive E(Ui|Xi, Zi, Si = 0). For

example, consider the jointly normal case where the conditional mean is defined in equation

(5. To predict the unobserved sample, we would first, estimate ρ by regressing Yi − f̂(Xi, θ̂)

on λ(ĝ(Xi, Zi, δ̂)) in the observed training sample. Then in a second step, predict the unob-

served conditional mean, E(Yi|Xi, Zi, Si = 0) with

f̂(Xi, θ̂)− ρ̂λ(−ĝ(Xi, Zi, δ̂) (7)

By incorporating the additional information for the unobserved sample, we also expect the

CF-PO approach could result in a more accurate predictor than the unbiased baseline.
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A.2 Simulation

This section reports the simulations results for the data generating processes and estimators

described in section 4 of the main paper, but applied to predicting the unobserved sample.

Figure 1 reports the simulation results for the three considered DGPs. As a reference,

we include an unbiased baseline equal to the median MSPE of the Ignore Sample Selection

(1) when ρ = 0. The patterns and conclusions from these figures mimic the patterns and

conclusions in the main paper. First, selection on unobservables does matter with respect

to prediction quality, in that both ignoring sample selection and using a weighting approach

worsen as the correlation increases. Second, including the instrument as an attribute can

result in worse prediction accuracy. Third, weighting will predict worse than ignoring sample

selection at high levels of correlation, even if there are gains to be had when there is only

selection on observables.

Figure 2 reports the simulation results for the two CF approaches over the three con-

sidered DGPs. There are several notable patterns that depart from the main paper. First

CF-PO is fairly consistently downward sloping as correlation increases, and in some most

cases, dips below the unbiased baseline. This make sense because in our prediction process

we capitalize on the additional information predicting on the unobserved sample provides.

In contrast, the quality of CF-VA is more variable across DGPs and learners. For instance,

with LASSO, the CF-VA appears to perform similar to the CF-PO approach unless there

is a weak instrument (DGP3). For random forest and neural nets, CF-VA does offer minor

improvements over ignore SS (1), but does not always achieve the same downward slope that

CF-PO does.

Consequently, the advice to the applied researcher stays very much the same whether

you are predicting in an unbiased sample or the unobserved sample. In general, the CF-PO

approach will provide better prediction quality. If the correlation is rather low, so selection

does not depend much on the unobservable component, then the CF-PO does not provide

much improvement.
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(a) DGP1

(b) DGP2

(c) DGP3

Compares unobserved sample MSPE for weighted and un-weighted approaches to sample selection with error
bars corresponding to 10th and 90th percentiles across simulations for (a) DGP1 , (b) DGP2, and (c) DGP3.

Figure 1: Unobserved sample: Weighted and un-weighted approaches to sample selection.
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(a) DGP1

(b) DGP2

(c) DGP3

Compares unobserved sample MSPE for Heckman CF approaches to sample selection with error bars corre-
sponding to 10th and 90th percentiles across simulations for (a) DGP1 , (b) DGP2, and (c) DGP3.

Figure 2: Unobserved sample: CF approaches to sample selection
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B Simulations for control function approaches with mis-

specification

Fundamental to the accuracy and validity of the control function approaches are the following

three assumptions:

1. Excluded Instrument: the instrument Zi has no impact on the outcome directly, e.g.,

E(Yi|Xi, Zi) = E(Yi|Xi)

2. Instrument Relevance: the instrument is informative for the sample selection process,

e.g., g(Xi, Zi, δ) ̸= g(Xi, δ).

3. Correct CF functional form: E(Ui|Xi, Zi, Si = 1) = E(Ui|g(Xi, Zi, δ)) = m(g(Xi, Zi, δ))

is well approximated by a linear combination of mk(·) = (m1k(·), ...,mkk(·))

The main paper considers (near) violations of the second assumption with weak instru-

ments in the third DGP in the simulation. In this section, we consider violations of the other

two assumptions and investigate the performance of the CF estimators.

B.1 Not excluded instrument

The instrument is not excluded if it has a direct impact on the outcome Yi in the structural

equation. This is problematic for the control function approaches since including Zi in the

conditional mean model for outcome would result in a loss of identification. Specifically, let

the conditional mean also be a function of the instrument, E(Yi|Xi, Zi) = f(Xi, Zi), then

there is no new identifying power in the control function m(g(Xi, Zi, δ)) resulting in a lack

of identification. On the other hand, if a researcher excludes Zi from the conditional mean

model for the outcome when it truly has an effect, then there is omitted variable bias. We

will investigate the consequence of presuming our instrument is excluded, while in reality it

has a direct impact on the outcome.

The data generating process is the same as the first DGP in the main paper, but the

instrument has a direct impact on the outcome,

f(Xi, Zi) =
100∑
j=1

Xjiθj + 0.1Zi. (8)
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Note that with a coefficient of 0.1, Zi has the second largest effect on Yi among all attributes.

The simulations consist of 500 iterations with training sample sizes of around 20,000 and

prediction sample sizes of 5,000.

Figure 3 reports the MSPE results for out of sample prediction performance of the two

CF approaches as well as the Ignore SS (1) as a comparison. Both the control function

approaches and the Ignore SS (1) tend to do worse with an invalid instrument compared

to the case in which the instrument is valid, DGP 1 in the main paper. This is because

the exclusion of Zi as a predictor for the outcome creates omitted variable bias when the

instrument truly has a direct effect on the outcome. In addition, the CF approaches tend to

perform worse relative to the Ignore SS (1), particularly at low levels of correlation. This is

because the estimators are not only suffering from omitting the impact of Zi but they are

also misappropriating the impacts of the instrument Zi through the control function. This

means that both of the CF approaches tend to have higher MSPE relative to the unbiased

baseline. Finally, we find that even with the poorer performance from the CF estimators,

when the level of endogenous sample selection is very high, then the CF approaches can still

offer some improvements for prediction.

Compares MSPE for Heckman CF approaches to sample selection with error bars corresponding to 10th and
90th percentiles when the instrument is not excluded.

Figure 3: CF approaches to selection with instrument not excluded.
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B.2 Incorrect CF functional form

Specifying the incorrect CF functional form can occur for a variety of reasons. For ex-

ample, when we use the inverse Mills ratio as the CF, then CF can be misspecified if

the true underlying distribution is not jointly normal. Alternatively, if the errors are het-

eroskedastic (also a consequence of heterogeneous coefficients) then E(Ui|Xi, Zi, Si = 1) =

E(Ui|Xi, Zi, g(Xi, Zi, δ)) ̸= E(Ui|g(Xi, Zi, δ)) so the conditional mean of the unobserved er-

ror conditional on selection cannot be controlled for only as a function of the model for the

sample selection process. We investigate the consequences of misspecification along the lines

of the first example. The second example of misspecification has been shown to be quite

consequential to the validity of the CF approaches (Schaffner 2002, Carlson & Joshi 2022).

Recently, a “generalized” CF approach proposed by Carlson & Joshi (2022) and Carlson

(2022) allows for heteroskedasticity by including interactions between Xi and the CF in

linear models and we leave it to future research to extend it to the ML setting.

The data generating process is the same as the first DGP in the main paper but instead

of jointly normal errors, we generate errors as follows,

Vi ∼ 0.8N(−0.5, 0.2) + 0.2N(2, 0.4) (9)

Ui ∼ ρVi +
√

1− ρ2 [0.8N(−0.5, 0.2) + 0.2N(2, 0.4)] . (10)

where both Vi and Ui are drawn from a mixture of normal distributions (with 80% probability,

a N(−0.5, 0.2), and with 20% probability, N(2, 0.4)), which produces bimodal and skewed

distributions with mean 0 and variance approximately 1. Note that the correlation between

Ui and Vi is created through ρVi when generating Ui.

We present two variations of the CF estimators. The first variation incorrectly assumes

normality and therefore uses the inverse Mills ratio as the control function

m̂i = λ(ĝ(Xi, Zi, δ̂)). (11)

The second variation attempts to allow for departures from normality by using a series
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approximation. Specifically, we use polynomials up to order 4 of the inverse Mills ratio

m̂i =
(
λ(ĝ(Xi, Zi, δ̂)), [λ(ĝ(Xi, Zi, δ̂))]

2, [λ(ĝ(Xi, Zi, δ̂))]
3, [λ(ĝ(Xi, Zi, δ̂))]

4
)
. (12)

Alternatively one could consider using splines instead of polynomials, or take series of

ĝ(Xi, Zi, δ̂)) or Φ(ĝ(Xi, Zi, δ̂)) instead (see Newey (2007) for descriptions of other possible

variations).

Figure (4) reports the results. We find that even when the distribution of the errors

deviate far from normality, using the inverse Mills ratio for the control function, displayed

in panel (a) still works quite well. This has been noted in the literature before, Van der

Klaauw & Koning (2003) observed in their simulations that “departures from normality do

not cause serious bias.” Utilizing the non-parametric CF, displayed in panel (b), also works

well, but given the already strong performance of the inverse Mills ratio, it does not offer

much, if any, improvement.
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(a) Inverse Mills ratio control function

(b) Non-parametric control function

Compares MSPE for Heckman CF approaches to sample selection with error bars corresponding to 10th and
90th percentiles for non-normal DGP using (a) inverse Mills ratio or (b) non-parametric control functions.

Figure 4: CF approaches to selection with parametric vs non-parametric CF.
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C Supplemental tables for application

Table 1: Application summary statistics

(1) (2) (3)

Incumbent Open Difference

Mean/SD Mean/SD Diff./t-stat

Per-capita dividends 4,889.93 4,843.95 45.98

(1,279.95) (1,399.04) (0.38)

Per-capita earnings 30,802.06 30,722.95 79.11

(5,342.46) (5,182.02) (0.17)

Per-capita household earnings 16,980.64 16,778.80 201.85

(3,850.09) (3,900.43) (0.58)

Per-capita transfer benefits 332.86 355.75 -22.89

(131.80) (148.69) (-1.79)

Per-capita non-farm proprieters income 23,050.77 22,931.51 119.26

(6,628.85) (6,325.43) (0.20)

Per-capita retirement income 2,918.58 3,013.68 -95.10

(947.42) (1,094.85) (-1.02)

Per-capita unemployment insurance 121.90 144.92 -23.02∗∗

(81.06) (108.62) (-2.62)

Per-capita farm proprieters income 19,611.15 20,614.29 -1,003.14

(18,838.67) (21,728.91) (-0.54)

Presidential election year 0.23 0.23 0.00

(0.42) (0.42) (0.03)

Farm employment 45,086.60 42,905.31 2,181.29

(44,598.66) (37,613.53) (0.59)

Non-farm employment 415109.35 425139.25 -10029.90

(554009.76) (555372.92) (-0.20)

Wage employment 2.26e+06 2.23e+06 37,498.32

(2.59e+06) (2.44e+06) (0.17)
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Republican incumbent 0.46 0.41 0.04

(0.50) (0.49) (1.00)

Democrat incumbent 0.53 0.57 -0.04

(0.50) (0.50) (-0.85)

Third-party challenger 0.11 0.18 -0.08∗

(0.31) (0.39) (-2.35)

Incumbent’s previous vote share 0.56 0.58 -0.02∗∗∗

(0.07) (0.09) (-3.35)

Observations 285 217 502

Counties 17095 12895 29990

t-statistics assume unequal variances, ** p<0.01, * p<0.05
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Table 2: Application first stage Probit coefficient estimates.

(1) (2) (3)
VARIABLES

Term limit -1.125*** -1.135*** -1.144***
(0.122) (0.123) (0.124)

Third party present -0.162** -0.115*
(0.0650) (0.0690)

Unemployment insurance per capita -0.152**
(0.0707)

Constant -0.00267 -0.00407 -0.00594
(0.0825) (0.0832) (0.0835)

Observations 502 502 502

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
Column 3 contains all covariates selected in the L1-penalized Probit and columns
1-2 show how the coefficient on the instrument changes when removing the other
two selected covariates.

Table 3: Application mean-squared prediction er-
rors

(1) (2) (3)
Ignore SS Weighted CF-PO

LASSO 0.0085 0.0090 0.0081
Random forest 0.0046 0.0041 0.0164
Neural net 0.0028 0.0026 0.0031

Ten-fold mean-squared prediction error of the learners
for approaches ignoring selection, weighting to address
selection on observables, and using a control function
approach (CFPO).
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