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Abstract

In 2019, a fire at a natural gas plant and historically low temperatures caused an emer-
gency shortage of natural gas in Michigan. To avoid an outage, the Governor issued
a request via statewide text alert to turn thermostats down to 65◦F. We analyze the
effectiveness of this request using high-frequency smart-thermostat data from Michigan
and four neighboring states. Using a difference-in-differences research design, we find
that Michigan households reduced thermostat settings by 1.1 degrees on average fol-
lowing the Governor’s request. Households that were previously above 65◦F responded
strongly, while households that were below did not respond at all or increased their
thermostat settings. Meanwhile, households in districts that voted for the Governor
in 2018 were more likely to comply. Our results suggest that unrealistic compliance
goals and political polarization reduce the effectiveness of emergency calls to conserve
energy.
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1 Introduction

During emergencies, government officials often make appeals to citizens to contribute

effort to a common goal. These appeals have taken the form of requests to contribute effort

to a public good (such as buying war bonds), to voluntarily ration consumption of scarce

goods (such as reducing consumption of water during a drought), or to comply with safety

protocols (such as taking certain precautions during a pandemic). Requests have become

sophisticated over time as the communication medium has evolved from print materials,

to radio and television announcements, and now to digital alerts with the ability to target

specific individuals in real time. The strategy of requests has also evolved with advances

in psychological research in how to influence behavior (Cialdini, 2006) and the use of the

“nudge” framework to reduce the costs of compliance (Thaler and Sunstein, 2008). Mod-

ern requests for pro-social behavior often take the form of nudge reminders, informational

treatments (Allcott and Taubinsky, 2015), appeals to morality or “moral suasion” (Ito et al.,

2018), appeals to expert authority (Breza et al., 2021), or social comparison to peer behavior

to induce compliance (Ferraro et al., 2011; Allcott and Rogers, 2014).

This paper analyzes the efficacy of an emergency request by the Michigan Governor for

households to reduce thermostat settings during a natural gas shortage caused by a fire at

a natural gas facility. During the cold wave of the 2019 polar vortex, outdoor temperatures

were extremely low, causing high demand for natural gas for space heating. At 10:30 am

on January 30, 2019, a fire broke out at Consumers Energy’s largest natural gas storage

facility. Consumers Energy is a gas and electric utility that serves roughly half of Michigan’s

households, and 75% of Michigan households rely on natural gas for heating. By 1:00 pm,

officials at the utility had recognized that demand for natural gas might exceed supply, with

the potential to cause the system to fail. At 2:30 pm, the utility requested via emails, social

media, and news media that all households reduce natural gas consumption. At 10:00 pm as

pipeline pressures continued to drop, the Michigan Governor tweeted a request to conserve

natural gas and at 10:30 pm followed up with an emergency alert directly to cell phones in

Michigan requesting that households reduce thermostat settings to 65◦F or below. The utility
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communications ensured that at least some households were aware of the request, but the

cell phone alert went out to all households within the lower peninsula of Michigan. The next

day at 4:30 pm, the utility issued an “all clear” time of midnight to its customers—thanks

to voluntary reductions in demand by households and industrial consumers, the system did

not fail and natural gas outages were avoided.

To measure household responses to the requests, we use smart thermostat data provided

by Ecobee’s Donate-Your-Data program. The data include thermostat setting and furnace

fan run time at 5-minute intervals. This high-frequency, household-level data allows us to

observe and measure each household’s response to the requests as the emergency unfolded.

Our empirical strategy uses households in the surrounding states of Ohio, Indiana, Illinois,

and Wisconsin as control units for a difference-in-differences approach. We find that mean

thermostat settings, the proportion of homes with a thermostat setting at or below 65◦F,

and furnace fan run time exhibit parallel pre-trends across the treatment and control units,

which support our interpretation of our estimates as a causal effect of the emergency request

on changes in thermostat settings.

Using a difference-in-differences strategy with four control states, we estimate the average

treatment effect of the emergency request. We find that on average, households lowered

their thermostats by 1.1◦F, roughly 25% of the size of the typical variation in the average

thermostat setting. The request increased the proportion of household thermostat settings

at or below 65◦F by 10 percentage points, a 45% increase relative to the proportion of

households whose thermostat settings are normally 65◦F or less. Finally, we examine the

effect of the request on furnace fan run time, which is our best available proxy for household

natural gas consumption. We find evidence that the emergency request reduced the furnace

run time by 1.5 minutes per hour, a 6% reduction relative to the predicted run time for

Michigan households during the emergency if there had been no reduction. These results are

robust across a number of specifications and checks for spillover treatment to border counties,

and a placebo test with an earlier cold wave shows that this behavior is not driven by outside

temperature alone. An event-study analysis reveals that the Governor’s amplification of the
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utility’s earlier request was critical for achieving complian ce. Prior to the Governor’s alert,

only 0.4% of additional households reduced thermostat settings to 65◦F or less; after the

Governor’s alert, the additional compliance rate was as high as 20%. We interpret this as

evidence that the Governor’s authority was essential to increasing the salience of the appeal.

The utility and Governor framed the emergency request with a clear reference point of

65◦F that affected household responses. We develop a theoretical framework that models a

nudge with a compliance target as a moral tax on behavior that exceeds the reference point

and as a moral subsidy on behavior that is below the reference point, extending the work of

Levitt and List (2007). A nudge with a compliance goal creates two types of reference point

heterogeneity: households that normally set the thermostat below this point were essentially

exempted from the emergency request and given license to increase the thermostat setting,

and households that normally set the thermostat significantly higher were asked to deviate

more from their typical consumption patterns. Our model predicts that households with

baseline thermostat settings below the 65◦F target will increase their thermostat settings,

and households with thermostat settings near the target will exactly comply with the request

and therefore have a smaller response to the emergency request relative to households whose

baseline thermostat settings are far from the compliance target. Finally, the model implies

that a nudge with a compliance target imposes unequal marginal incentives on households,

which violates the equimarginal principle and suggests that a nudge with a compliance target

does not achieve the least-cost behavior change.

Empirically, we observe strong perverse framing effects in the data consistent with our

model (Tversky and Kahneman, 1981). Using an estimate of each household’s expected

baseline temperature, we find that households that typically set the thermostat below 65◦F

were unresponsive to the emergency request on average. Households that are typically the

coldest (far below 65◦F) increased the thermostat after the emergency request. For baseline

thermostat settings above the reference point, the higher the baseline thermostat setting, the

less likely a household was to meet the compliance target. At first, the average thermostat

reduction increases with distance from the compliance target, but for baseline settings 73◦F
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and above the average thermostat reduction decreases as the compliance rate effect begins

to dominate. The results suggest that setting a more aggressive reference point trades off an

increased treatment effect for individuals near the reference point with decreased compliance

from discouraged individuals far from the reference point.

We scrutinize the role of political polarization as a factor in determining compliance with

the request. The Governor, Gretchen Whitmer, assumed office in January 2019, less than

a month before the polar vortex. We hypothesize that households that did not approve of

the Governor may have been less likely to comply with the request. Our analysis studies

the differential compliance of households in counties that supported the Governor’s 2018

election bid, using data on county-level election returns. We show that compliance rates

and the average reduction in thermostat setting are increasing in the Governor’s vote share.

Households in counties where the Governor’s vote share was above 70% reduced thermostat

settings by about twice as much relative to households in counties where the Governor’s vote

share was below 40%.

The results of this study are important for policymakers studying compliance with emer-

gency requests in a broad range of fields. For instance, during the COVID-19 pandemic, local,

national, and international governmental bodies sought to coordinate behavior to reduce the

spread of the virus through a combination of compulsory policies and requests for volun-

tary compliance. Pandemic-related policies and requests were met with mixed compliance

and even open defiance, and a growing literature seeks to understand the effects of political

affiliation on cooperation with requests for social distancing and stay-at-home orders (e.g.,

Allcott et al., 2020; Barrios and Hochberg, 2020). Related to compliance with energy and

environmental policy, economists have studied firm strategic avoidance of air quality mon-

itoring (Zou, 2021), imperfect enforcement of emissions caps (Sigman and Chang, 2011),

voluntary reductions of emissions (Foster et al., 2009; Foster and Gutierrez, 2013), compli-

ance with the US acid rain program (Montero, 1999), and the use of regulatory loopholes

to avoid compliance with fuel efficiency regulations (Anderson and Sallee, 2011). Beatty

et al. (2019) study household emergency preparedness for hurricanes, finding that household
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behavior is highly influenced by recent hurricane events and that households generally do

not follow government preparedness recommendations. Other work shows that an increased

perception of risk and confidence in government institutions increases compliance with hur-

ricane evacuation orders (Whitehead et al., 2000; Kim and Oh, 2015). In another context,

Wichman et al. (2016) find that households in North Carolina reduced consumption of water

during a drought when both voluntary and mandatory non-price mechanisms were imple-

mented to restrict water use. During or after energy emergencies, utilities and governments

often resort to emergency appeals for conservation. For example, Luyben (1982) studies a

1977 request by President Carter for US households to reduce thermostat settings to 65◦F or

below, finding that compliance was low overall (27%) and that self-reported compliance was

higher than recorded compliance. After the 2000 and 2001 California energy crisis, energy

conservation campaigns were successful in reducing electricity consumption when electricity

prices were capped (Reiss and White, 2008). Our paper contributes to these literatures by

providing what we believe is the most granular data on household compliance with emer-

gency requests. In addition, the unexpected nature of the emergency and its isolation to one

state creates a credible natural experiment that allows us to pursue an identification strat-

egy that takes advantage of plausibly exogenous time and cross-sectional variation, which

is uncommon for this literature. The potential for political polarization in our setting is

particularly salient, given the proximity of the emergency to the Governor’s election in a

politically divided state.1

Our work also contributes to the empirical literature studying reference points and eco-

nomic behavior. Research in this area examines labor supply behavior relative to earnings

expectations (Thakral and Tô, 2021; Farber, 2008; Camerer et al., 1997), retirement decisions

relative to age reference points (Seibold, 2021), and loss aversion in tax filing (Engström et al.,

2015). Other work focuses on the use of social comparison as a reference point to influence be-

havior and is often applied to energy conservation (e.g., Allcott (2011), Ferraro et al. (2011),

Ferraro and Price (2013), Brent et al. (2015), and Hallsworth et al. (2017)). In the charitable

1Also of note is that Governor Whitmer was later the target of a politically-motivated abduction plot in
response to her COVID-19 lockdown policies.
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giving literature, suggested donation amounts increase voluntary contributions and anchor

donations to the suggested amount (Edwards and List, 2014). Harding and Hsiaw (2014)

study how non-binding goal setting for energy conservation leads to behavior consistent with

reference-dependent preferences. Brown et al. (2013) find that factory-default thermostat

settings substantially impacted subsequent thermostat levels chosen in the workplace. Our

paper contributes to this literature by studying a novel reference point created within the

phrasing of a governmental emergency request. Our results suggest that for the policymaker,

setting a reference point more aggressively trades off an increase in the effect of meeting the

reference point with the cost of meeting the reference point. In our context, further lowering

the requested thermostat setting would have reduced compliance from those with high base-

line settings but would have increased the effort from those with medium and low baseline

settings. These findings imply that policies may be designed so as to have effect-maximizing

reference point levels. Finally, our theoretical framework extends the moral payoff model

of Levitt and List (2007) to nudges with a compliance target, providing new predictions

for heterogeneous behavior based on a person’s pre-treatment distance from the reference

point. This is particularly important because we show that compliance targets can cause

households to respond perversely when they are already in compliance, undermining the goal

of the policy.

In addition, this paper is relevant to the literature in environmental and energy economics

analyzing the use of non-price mechanisms to conserve household consumption of water,

natural gas, and electricity.2 Given political constraints on raising prices of these goods,

regulators and suppliers have sought to curb consumption via mandatory restrictions and

voluntary requests, which have seen varying levels of success. In Ito et al. (2018), the authors

conduct a field experiment that provided Japanese households with voluntary appeals or

price incentives to reduce electricity consumption. Relative to a control group, voluntary

appeals resulted in a short term reduction in electricity consumption of 8% while price

incentives resulted in a reduction in electricity consumption of 17% that was sustained over

2See Carlsson et al. (2021) for a recent overview of papers analyzing nudges and non-price mechanisms.
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a longer period. In the United States, Holladay et al. (2015) find that utility and media

appeals for peak-hour conservation can perversely lead to increases in energy consumption in

anticipation of an outage, Burkhardt et al. (2019) find very little responsiveness to voluntary

appeals to conserve during peak hours relative to price mechanisms, while Brandon et al.

(2018) find that utility-led requests resulted in a 4% average reduction in consumption during

peak hours. In our setting, we document that households were unresponsive to utility and

media appeals, but the intervention of the Governor via the wireless alert system resulted

in compliance of a similar magnitude to the field experimental results in Ito et al. (2018)

and Brandon et al. (2018). Our paper contributes novel evidence that reach and authority

of the messenger can substantially affect the salience of emergency appeals for conservation,

and that political context substantially impacts the effectiveness of non-price mechanisms.

Allcott and Rogers (2014) find evidence that households reduce electricity consumption in

response to home energy reports and that repeated treatments induce additional reductions

and enforce habits, while Costa and Gerard (2021) find that nine-month quotas on energy

consumption provided reductions in energy use up to nine years after the quotas ended.

In contrast, we find that without repeated treatments that household compliance wanes by

the end of the request, and while some conservation persists after the all-clear, the effect is

modest.

Our paper proceeds by describing the polar vortex and natural gas fire events in greater

detail. We develop a theoretical model of thermostat setting choice in the presence of a

nudge with a compliance target, which generates hypotheses for household behavior. We

then introduce the smart thermostat data used in the paper. Next, we present our empirical

strategy and analysis, which we subdivide into a section estimating the average treatment

effect of the request, a section presenting an event-study analysis, a section examining the

effects of the reference point on behavior, and a section examining the role of political support

of the Governor on compliance. We discuss the external validity of the estimates in section

6. Finally, section 7 summarizes the findings and concludes.
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2 Polar vortex and natural gas fire events

Extreme cold weather events caused by disturbances to the polar vortex have recently

received significant attention in the United States and Europe. Perhaps most notable was

the 2021 polar vortex event that overwhelmed the electricity grid in Texas, killing 172 people

and resulting in damages valued at levels ranging from $20 billion to $295 billion (NOAA,

2021; Perryman Group, 2021). Since 1980, winter disasters have resulted in 19 “billion-dollar

climate disasters” in the United States, causing 1,223 deaths (NOAA, 2021). There is only

weak evidence that climate change is contributing to the perceived increase in polar vortex

events (Blackport and Screen, 2020); however, aging energy infrastructure in the United

States and Europe may increase the costs of such events in the future.

Beginning on Tuesday, January 29, 2019, temperatures in the Midwest declined to nearly

record-low levels as cold air in the stratosphere over the Arctic blew southward over North

America (NOAA, 2019). Temperatures reached -23◦F in Chicago, -13◦F in Detroit, -11◦F

in Indianapolis, and as low as -45◦F elsewhere in the United States (EIA, 2019b). On

Wednesday, January 30, 2019, single-day estimated natural gas consumption in the United

States hit an all-time high with 37.9 billion cubic feet consumed in a single day, and electricity

demand in the Midwest approached all-time peaks (EIA, 2019a). In 2017, over 75 percent

of Michigan homes used natural gas as the primary heating fuel (MPSC, 2019b).

Coinciding with this extreme demand-side stress, a supply-side emergency caused a near

system-wide natural gas delivery failure in Michigan. On January 30, 2019 at 10:30 am,

a fire broke out at the Ray Compressor Station in Macomb County, Consumers Energy’s

largest natural gas storage facility (MPSC, 2019b). Immediately after the fire broke out, the

utility drew upon standby natural gas reserves to stabilize pipeline pressures (Consumers

Energy Company, 2019). By 1:00 pm, Consumers Energy recognized the possibility that

demand could exceed supply, which could cause total system failure, and contacted their

highest demand industrial and commercial customers with requests to reduce consumption

of natural gas. At 2:26 pm, Consumers issued a tweet (appendix figure 9a) requesting house-

holds to reduce thermostat settings and sent emails to residential and business customers
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Figure 1: Each series corresponds to a Michigan natural gas pipeline instantaneous pressure,
January 30-31, 2019. Image source: Michigan Public Service Commission Case No. U-20463
(Consumers Energy Company, 2019).

requesting reductions in natural gas use. Shortly thereafter, the CEO of Consumers Energy

took to Facebook Live to urge households to reduce thermostat settings (appendix figure 9b).

The utility ultimately sent over 500,000 external emails, made 21 social media posts, and

responded to 130 media inquiries on January 30-31 (Consumers Energy Company, 2019).

State-operated buildings reduced thermostat settings by 5◦F and manufacturers reduced

consumption of natural gas (DesOrmeau, 2019). In addition, the utility issued mandatory

curtailment orders for industrial and commercial natural gas customers and requested that

natural gas electricity generators reduce generation to preserve residential heating (Con-

sumers Energy Company, 2019). On the supply side, Consumers Energy purchased 925

MMcf/day worth of same-day supply of natural gas for January 30th, of which only 61%

was ultimately delivered due to supply constraints (Consumers Energy Company, 2019).3

3Same-day natural gas delivery is relatively rare compared to same-day electricity generation, for example.
This event was the first time that Consumers Energy had attempted to secure same-day delivery (Consumers
Energy Company, 2019). For extreme-weather events, utilities can increase pressure in natural gas pipelines
ahead of time, storing gas within the system. Given that the flow of gas is not instantaneous, same-day
supply is not typically used to balance supply and demand.
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Despite efforts to reduce non-residential consumption and to procure natural gas on the

supply side, the system was still unpacking (losing pressure) going into the evening. Figure

1 displays Michigan natural gas pipeline pressures on January 30th and 31st. Despite efforts

to curb demand and increase supply, equilibrium pressures were dropping as the evening

approached and temperatures continued to get colder. At 8:00 pm, Consumers Energy

reached out to the Governor of Michigan, Gretchen Whitmer, to make a final public appeal

to households to reduce thermostat settings (Consumers Energy Company, 2019).

At 10:01 pm, the Governor of Michigan tweeted a request for households to reduce ther-

mostats to 65◦F (appendix figure 9c), and at 10:30 pm activated FEMA’s Wireless Emer-

gency Alert system to send a text alert to all cell phones in Michigan asking households

to reduce thermostat settings to 65◦F (Gray, 2019). The text of the cell phone alert mes-

sage read “Due to extreme temps Consumers asks everyone to lower their heat to 65 or less

through Fri.” Conversations with the Michigan State Police Emergency Management and

Homeland Security department and Consumers Energy indicated that officials believed 65◦F

was achievable, comfortable, and likely to be lower than the usual thermostat setting, but

the number was chosen arbitrarily.

Shortly after the Governor’s text message at 10:40 pm, 30% of the Ray Compressor

Station capacity came back online, which combined with demand reductions to begin to

increase pressures (Consumers Energy Company, 2019). Using data provided by Consumers

Energy, forecasted natural gas demand using realized weather conditions was 3.3 billion

cubic feet on January 30th and 2.9 billion cubic feet on January 31st. After all reductions in

consumption were accounted for, actual consumption was 3.0 billion cubic feet on January

30th and 2.6 billion cubic feet on January 31st, implying a 10.7% and 10.5% reduction in

daily consumption from all sources (residential and non-residential). On January 31st at

4:30 pm, Consumers Energy tweeted an “all clear” time of midnight that night, after which

households could resume heating normally (appendix figure 9d).

Did households listen and comply with the emergency requests issued by the utility and

public officials? Furthermore, how did the phrasing of the request around a thermostat
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setting of 65◦F affect household compliance? Given the Governor’s request, did political

polarization affect which households were likely to comply? We introduce a theoretical

framework to generate hypotheses and test them using high-frequency smart thermostat

data.

3 Theoretical framework

Here we develop a theoretical model in which utility-maximizing households choose ther-

mostat settings in the presence of an emergency request to reduce thermostat settings to a

compliance target. Typically, households choose the thermostat setting that equates their

marginal benefit from a degree Fahrenheit with the marginal cost of increasing the ther-

mostat by an additional degree Fahrenheit.4 We model the emergency request to reduce

thermostat settings to 65◦F as an additional moral payoff term in the utility function similar

to the moral payoff term introduced by Levitt and List (2007) and considered in Ferraro and

Price (2013). In our case, we model the emergency request as a moral tax on thermostat set-

tings above the requested reference level, a moral subsidy for thermostat settings below the

requested reference level, and having no marginal incentive for thermostat settings exactly

equal to the requested reference level.

Our model generates predictions that the emergency request will cause households with

baseline thermostat settings above 65◦F to reduce thermostat settings and households with

thermostat settings below 65◦F to increase thermostat settings. Because of the nonlinearity

in the marginal incentive at the 65◦F target, households with baseline thermostat settings

near the target will have an incentive to exactly comply with the request, while households

far from the target will partially comply but have a larger treatment effect, all else equal.

The model thus suggests two perverse framing effects of the 65◦F target. First, households

heating at temperatures below the target will increase the thermostat setting and consume

more energy. Second, households with thermostat settings near 65◦F will only have an

4A choice modeled in Brewer (2022).
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incentive to reduce the thermostat setting by a small amount.

We consider a household i with characteristics θi choosing the thermostat setting Ti in

any given time period. The regulator announces a requested thermostat setting R (which is

equal to 65◦F in our context). The utility function for household i is linearly separable in

consumption benefits Bi(·), energy heating costs Ci(·), and the moral payoff Mi(·):5

Ui(Ti, R, s; θi) = Bi(Ti; θi)− Ci(Ti; θi)−Mi(Ti, R, s; θi). (1)

We assume that locally, households weakly prefer higher temperatures ∂Bi/∂Ti ≥ 0 at a

diminishing rate ∂2Bi/∂T
2
i < 0. In addition, heating costs weakly increase with higher

thermostat settings ∂Ci/∂Ti ≥ 0 and are weakly convex ∂2Bi/∂T
2
i ≥ 0. The moral payoff

term exerts a moral marginal cost on consumption above the requested reference point, has

no marginal influence when thermostat setting equals the requested reference point, and

exerts a moral subsidy on consumption below the reference point. Similar to Ferraro and

Price (2013), s represents the salience or strength of the request. Thus, the moral payoff

term has the following marginal effects on the household’s utility:

∂Mi/∂Ti =


τ(Ti) > 0 if Ti > R,

0 if Ti = R,

σ(Ti) < 0 if Ti < R.

(2)

When there is no emergency request, the household maximizes utility by choosing the

thermostat setting that equates the household’s marginal benefit of indoor temperature with

the marginal energy cost in the first-order condition:

∂Bi/∂Ti = ∂Ci/∂Ti. (3)

5Linear separability in heating costs is not necessary to derive the comparative statics in this section but
simplifies the notation and exposition.
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When there is an emergency request, the household’s marginal cost of heating includes both

the marginal moral cost and the marginal energy cost of heating. The household maximizes

utility by equating the marginal benefit of indoor temperature with the new marginal cost

of heating in the first order condition:

∂Bi/∂Ti = ∂Ci/∂Ti + ∂Mi/∂Ti, (4)

or by choosing a corner solution of exact compliance with the request: Ti = R. Thus, a salient

emergency request causes all households to move the thermostat closer to the reference level,

whether they initially were heating above or below the reference point.

In this context, the strength or salience s varies based on the platform and identity of

the messenger. The utility company broadcast the initial emergency request, which was also

taken up by local traditional news media from 2:30 pm - 10:00 pm. Beginning at 10:01

pm, the Governor took up the emergency appeal and issued the cell phone alert at 10:30

pm. We hypothesize that the initial request was a very low-salience request, but that the

Governor’s requests substantially increased the salience. Prior work studying emergency

appeals for energy conservation have found that appeals via channels such as local news fail

to induce reductions in energy consumption or can perversely cause households to increase

energy consumption in expectation of a potential outage (Holladay et al., 2015). Thus, we

expect that most reductions in thermostat setting will occur after 10:00 pm, reflecting the

change in s.

Figure 2 illustrates the model with constant marginal cost and linear demand curves

for four hypothetical households. Households i ∈ {A,B,C,D} have marginal willingness

to pay for heating Di. Prior to the emergency request, each household equates marginal

willingness to pay with marginal cost of heating and choose thermostat setting T 0
i . After

the request, the marginal cost of heating now includes the moral marginal cost. Household

A partially complies, reducing the thermostat setting to T ′
A > 65, while household B fully

complies, choosing the corner solution T ′
B = 65. The treatment effect for household B is thus
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Figure 2: Theoretical effect of a request to reduce thermostats to 65◦F for four household
types with marginal willingness to pay for heating Di for i ∈ {A,B,C,D}. Before the
emergency request, households equate marginal willingness to pay with the marginal cost of
heating and choose thermostat setting T 0

i . The request acts as a moral tax on temperatures
above 65◦F and a moral subsidy on temperatures below 65◦F, causing households to choose
thermostat setting T ′

i . Household A partially complies, while household B fully complies.
Households C and D perversely increase the thermostat setting toward the reference level.
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limited by the reference point. The behavior of hypothetical households A and B generates

our first two empirical hypotheses. The first hypothesis is that households with baseline

thermostat settings T 0
i near the reference point will be more likely to comply fully with the

request relative to households far above the reference point. The second hypothesis is that

households with baseline thermostat settings far from the reference point will have a larger

average treatment effect as they are less likely to achieve the corner solution. We believe

this effect is likely to attenuate for households with the highest baseline thermostat settings,

as the compliance target may appear out of reach or unrealistic. This attenuation would be

consistent with a moral cost function decreasing in thermostat setting, or τ ′(Ti) < 0.

Households C and D respond perversely to the emergency request and increase ther-

mostat settings in response to the moral subsidy. Household C mirrors the behavior of

household B and chooses the corner solution T ′
C = 65, while household D mirrors the be-

havior of household A and increases the thermostat setting toward the reference level. For

households with baseline thermostat settings below 65◦F, we hypothesize that we will see

increased thermostat settings with similar heterogeneity based on the distance of the baseline

thermostat setting T 0
i from the reference level. Thus, for households with baseline thermo-

stat settings near but below 65◦F, we expect to see more perverse compliance by setting the

thermostat exactly to the reference point and a smaller perverse treatment effect relative to

those with baseline thermostat settings far below the reference point.

Finally, this model suggests that an emergency request tied to a reference point is not

the least-cost nudge required to achieve a given reduction in energy consumption. Equa-

tion 2 shows that households will face heterogeneous marginal costs of energy consumption,

violating the equimarginal principle (also called the equal marginal principle or Gossen’s

second law), immediately implying this nudge is of higher cost relative to a nudge that ex-

erts a moral marginal cost of consumption that applies no matter the household’s baseline

thermostat setting. Perhaps more intuitively, a nudge that perversely subsidizes additional

consumption of energy for some households when energy is scarce increases the mismatch

between the retail price of energy and the wholesale price of energy for those households.
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While it is possible that the reference level increases the strength or salience of the request

by providing households with a concrete action to perform, a request for a uniform reduction

in the thermostat setting (e.g., a request to reduce the thermostat setting by 5◦F) would

still be concrete. Such a uniform request would rule out perverse behavior, but would still

not satisfy the equimarginal principle. We revisit these implications for the design of an

emergency request in the conclusion.

4 Smart thermostat data and research design

We use data on smart thermostat temperature settings provided by Ecobee as part of the

2022 release of the “Donate Your Data” program.6 The raw data include 5-minute interval

observations of thermostat settings and the amount of time the furnace fan was running.

In addition, a small amount of information about the household is available, including the

location up to city and state, the number of occupants, the size, age, and number of floors

of the home, and when the smart thermostat was first connected. We augment these data

with hourly outdoor temperature, humidity, wind speed, precipitation, snow depth, and

cloud cover at the city level purchased from Visual Crossing. Consumers Energy only serves

households in Michigan. We limit the sample of households to those in Michigan and the

surrounding four states for controls: Ohio, Indiana, Illinois, and Wisconsin.7 99.89 percent of

sample households heat with natural gas, compared to 75 percent of population households

in Michigan. We include all observations between January 2nd and February 3rd, 2019.

There are 3,036 households from Michigan and 9,221 control households in the final sample.

It is possible that the households in our sample responded to the emergency request

6This paper is among a few others studying the effects of smart thermostats or using smart thermostat
data. Ge and Ho (2019) study how households change the thermostat in response to warm and cold weather
and assess the degree of habit formation in thermostat settings. A working paper by Brandon et al. (2021)
find that smart thermostats alone do not result in energy savings, partially due to users overriding smart
thermostat algorithms. Another working paper by Blonz et al. (2021) studies an energy-efficiency program
implemented by Ecobee that automatically reduces thermostat settings during peak pricing periods.

7We exclude households in the Upper Peninsula of Michigan because these households are on a separate
natural gas network and it is unclear whether they were treated or were controls. The Upper Peninsula
accounts for about 3% of the population of Michigan; dropped households represent 1% of the Michigan
sample in the data.
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Table 1: Summary statistics for households in Michigan and in the control states (Ohio,
Indiana, Illinois, and Wisconsin). The sample includes observations from January 2nd-
February 3rd.

(1) (2) (3)
Michigan Controls Difference
Mean/SD Mean/SD Diff./t-stat

Sq ft 2,387.18 2,545.96 158.78**
(1,033.94) (1,138.21) (6.83)

Age of home (years) 32.73 33.96 1.23*
(29.00) (31.25) (1.98)

Number of occupants 1.19 1.34 0.15**
(1.70) (1.75) (4.27)

January 2 - 29 thermostat setting 66.87 67.45 0.58**
(3.60) (3.32) (7.83)

January 30 thermostat setting before event 67.38 68.20 0.82**
(3.93) (3.79) (9.88)

January 30 - 31 thermostat setting during event 67.09 68.67 1.58**
(3.48) (3.56) (21.35)

January 2 - 29 outside temperature 23.86 25.08 1.22**
(2.33) (4.18) (20.02)

January 30 - 31 outside temperature -0.29 -0.50 -0.22**
(0.24) (0.55) (-29.69)

Households 3,036 9,221 12,257
Observations 581,163 1,780,876 2,362,039

** p<0.01, * p<0.05
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differently than the general population due to selection into smart thermostat ownership and

the Donate-Your-Data program. On observable characteristics, the Ecobee Donate-Your-

Data households are comparable to the average household in the nationally representative

Residential Energy Consumption Survey sample, though the Ecobee households have slightly

more members (Meier et al., 2019). Our primary selection concern is that Ecobee households

who join the Donate-Your-Data program may be more likely to contribute to other public

goods and therefore more likely to comply with the emergency request. Another concern we

have is that the Ecobee smart thermostat may make compliance with the request easier than

compliance using a conventional thermostat because Ecobee thermostats can be controlled

remotely via an app. While these issues are not a problem for our research design because

treatment and control households are the same (i.e., our research design is internally valid), it

may be that our estimated treatment effects overstate the response of the average household.

In section 6 we discuss the external validity of the estimates in more detail. We find that

our estimated treatment effect is smaller than that estimated using aggregate natural gas

consumption data provided by the utility, the opposite of what we would expect if smart

thermostat users were more likely to comply with the request.8 We also show in that section

that early adopters of smart thermostats responded similarly to late adopters. These findings

mitigate our concerns that our estimates may not generalize to those with conventional

thermostats.

For computational tractability and to reduce noise, we aggregate the data into four-hourly

time intervals, resulting in 581,163 household-time observations in Michigan and 1,780,876

household-time observations in the controls. We compute the four-hourly average thermo-

stat setting and minutes per hour the furnace was running. Analysis at the hourly level or

lower does not substantially change the estimates, which we display in appendix C. Table 1

displays summary statistics for the treatment and control groups. Due to the large sample

size, most differences in means for treatment and control are statistically significant, but

are not practically meaningful and do not pose a threat to our empirical strategy. The pri-

8Aggregate consumption data includes residential, commercial and industrial consumption.
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Figure 3: (a): Sample mean daily temperatures for Michigan and control households in
January 2019. January 20-21 are used as a “placebo” event for the January 30-31 polar
vortex and emergency request. (b): Sample mean four-hour average outdoor temperatures
for Michigan and control households in the hours before and during the emergency.

mary differences we see are that sample homes in Michigan are slightly smaller and have

fewer occupants on average. During January 2 - 29, Michigan and the control states experi-

enced average temperatures around 24 and 25◦F. The outside average temperature in both

treatments and controls dropped to just under 0◦F during the event. From January 2nd

through 29th, Michigan household thermostat settings were 0.6◦F lower than the control

household thermostat settings. In the hours before the first appeal to lower thermostats, the

gap in thermostat settings had increased to 0.78◦F. After households were asked to reduce

the thermostat, the gap increased to 1.58◦F.

Our research design compares outcomes in Michigan to those in control states where

there were no appeals to reduce natural gas consumption. We consider three outcomes: the

thermostat setting, a binary variable equal to one if the thermostat setting is at or below

65◦F, and the amount of time the furnace fan ran during the hour. Standard furnaces run at

essentially one speed.9 When the thermostat setting is reduced, the home cools to the new

setting and the furnace does not run, saving energy. When the indoor temperature goes below

the new thermostat setting, the furnace runs again at full speed for a short period to maintain

9Two-stage furnaces can run at full-speed and half-speed depending on the scenario to reduce energy use
and ramping costs.
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Figure 4: Sample average values of the out-
come variables for treatment and control
households, January 29 - February 1. Panel
(a) plots average thermostat settings, panel
(b) plots the fraction of households with ther-
mostat settings at or below 65◦F, and panel
(c) plots the average furnace fan run time in
each four-hour period.

the indoor temperature. Thus, furnace fan running time is our best proxy for natural gas

consumption (Meier et al., 2019). Consumers Energy shared daily aggregate natural gas

consumption and forecasts of expected consumption from their internal forecasting model,

which we use to construct an estimate of total demand response from all sources.

Households in the control states (the “Great Lakes states”: Ohio, Indiana, Illinois, and

Wisconsin) have weather patterns and housing stocks similar to Michigan. Furthermore,

these states also experienced extreme cold during the polar vortex event. Figure 3a plots

daily average temperatures during January for Michigan and control states, showing the

polar vortex event at the end of the month in addition to a similar cold wave on January

20th and 21st that we study in a placebo exercise in the appendix. Figure 3b plots the four-

hour average outdoor temperature before and during the emergency, demonstrating that

both treatment and control groups experienced similar conditions during the polar vortex.
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Because we observe treatment and control households before and during the event,

the difference-in-differences framework is a natural candidate to estimate the effect of the

emergency request on thermostat settings. The key assumption needed in a difference-in-

differences design is a parallel trends assumption in the evolution of the potential untreated

outcome. To demonstrate the validity of the difference-in-differences assumption, we demon-

strate visually that our outcome variables exhibit parallel trends prior to the event (we also

provide event-study estimates with 10 days of pre-trend estimates in section 5.2). Figure 4a

plots four-hour sample average thermostat settings, figure 4b plots the fraction of households

with thermostat settings at or below 65◦F, and figure 4c plots the number of minutes per hour

the fan was running in Michigan and the control states from January 29th through February

1st. The first vertical dashed line indicates when the utility company first broadcast a re-

quest to residential customers to reduce natural gas consumption by reducing thermostats,

the second vertical dashed line indicates when the Governor broadcast the emergency appeal,

and the final vertical dashed line indicates the all-clear time.

Prior to the event, the treatment and control thermostat settings, fraction of households

with thermostat settings at or below 65◦F, and the number of minutes the fan was running

in Michigan exhibit roughly parallel trends even without conditioning on covariates. When

the event begins, a take-up lag can be observed where households have either not received

the message or are not home and able to respond. A few hours after the event begins, the

average thermostat setting in Michigan breaks trend and significantly decreases. Despite

the Governor’s request that households reduce thermostats to 65◦F or lower, the average

observed smart thermostat setting in Michigan is above 65◦F during the entire event. It

appears that compliance with the request does not begin until after the Governor’s appeal.

The differences in furnace fan running time after the request are more difficult to detect

visually than thermostat setting and fraction of compliant households.
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5 Empirical analysis and results

We compare differences in outcomes between households in Michigan and surrounding

states before and after the emergency requests. We consider three outcomes. The household’s

thermostat setting is a continuous measure of the household’s compliance with the emergency

request and encompasses the thermal discomfort that the household incurred to contribute to

the public good. The second outcome is a binary variable equal to one when the thermostat

setting is at or below 65◦F. This binary variable captures whether households complied with

the request to the letter. The final outcome variable, average number of minutes the fan ran

during the hour, is the best proxy available for the amount of energy conserved.

The analysis is divided into four subsections. We begin with a standard difference-in-

differences framework to estimate the average treatment effect of the program. We then

move to an event-study framework that allows for dynamic effects by sample time period

as word of the emergency reached more households. Next, we test whether support for the

Governor of Michigan affected compliance rates. Finally, we study how the phrasing of the

emergency request around 65◦F influenced household behavior.

5.1 Average treatment effect estimates

The first set of regressions we consider are two-way fixed effects specifications on all

January 2019 observations. We consider outcomes Yi,t and code a binary variable Di,t = 1

for all Michigan observations beginning January 30th at 2:00 pm and zero beforehand. Our

preferred specification takes the following form:

Yi,t = αi + λt + βDi,t + γXi,t + δs,h,d + εi,t, (5)

where αi are household fixed effects, λt are time-of-sample indicator variables, Xi,t are con-

trols for weather variables (including outside temperature, humidity, wind speed, precipita-

tion, snow depth, and cloud cover), δs,h,d are state by day-of-week by time-of-day indicator

variables, and εi,t is mean-zero heterogeneity. The state by day-of-week by time-of-day indi-
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Table 2: Estimates of the regressions from equation 5. The sample includes observations
from January 2nd-January 31st.

Two-way fixed effects regressions
(1) (2) (3)

VARIABLES Thermostat setting Thermostat ≤ 65F Fan run time

Michigan x Post -1.072** 0.101** -1.470*
(0.133) (0.007) (0.514)

Constant 67.429** 0.224** 24.820**
(0.042) (0.002) (0.788)

Observations 2,126,336 2,126,336 2,135,114
R-squared 0.710 0.504 0.752
Weather controls YES YES YES
Household FE YES YES YES
Time FE YES YES YES
Day of week × hour of day × state YES YES YES

Robust standard errors clustered at the state level.
** p<0.01, * p<0.05

cator variables δs,h,d allow us to control flexibly for differences in time-varying heterogeneity

across states. Equation 5 is a two-way fixed-effects specification. The ordinary-least-squares

estimate β̂ is a difference-in-differences estimate that identifies the causal average treatment

effect on the treated under the standard parallel trends, no spillovers, and strict exogeneity

assumptions.

Table 2 presents the coefficient estimates of the difference-in-differences regressions for

each of the three outcome variables: thermostat setting, a binary variable for setting the

thermostat at or below 65◦F, and the average number of minutes per hour the furnace fan

ran. We cluster the standard errors at the state level.10 When the thermostat setting is the

outcome variable (column 1), the coefficient on Di,t is an estimate of the average treatment

effect and is the mean difference in thermostat settings for Michigan and control states before

10We cluster at the state level because that is the level of treatment variation (Abadie et al., 2017), but
given that there are only five state clusters, it is possible that the cluster-robust standard error estimators
will not asymptotically converge (Cameron et al., 2008) and may either overstate or understate the precision
of the estimates. As a robustness check, we implement the Donald and Lang (2007) estimator of the
average treatment effect in appendix F, which provides valid inference for five clusters and find that the
average treatment effects are still statistically significant, so we are not concerned about the precision of our
estimates.
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and after the treatment. We estimate a reduction of 1.1◦F after the emergency request for

Michigan households relative to neighbor state households. This reduction is about 0.25

standard deviations in the thermostat setting from January 2 - 29.

Column 2 presents estimates using an indicator variable for having the thermostat at

or below 65◦F as the outcome variable, which we interpret as full compliance with the

request. Given that at any time, some fraction of Michigan households would already have

thermostat settings at 65◦F or below, the difference-in-differences estimate accounts for this

by differencing out the within-household and within-time average incidental compliance. The

coefficient on Di,t is an estimate of the additional fraction of households induced to set the

thermostat at or below 65◦F. We estimate a 10.1 percentage point increase in the fraction

of households with thermostat settings at or below 65◦F for Michigan households relative

to neighbor state households. Using the “constant” term reported in the two-way fixed

effects estimates, the expected number of households in Michigan that already would have

had thermostat settings less than or equal to 65◦F was 22 percent, which we consider the

incidental compliance.

Finally, column 3 presents the coefficient estimates of the difference-in-differences regres-

sions using furnace fan run time as the dependent variable, which is the closest proxy to

energy consumption in the smart thermostat data. We estimate a 1.5 minute per hour av-

erage reduction in furnace fan run time for Michigan households relative to neighbor state

households. Relative to the predicted mean furnace fan run time for Michigan households

during the emergency period, this is a 6 percent decrease. Given the lack of natural gas

consumption data at the household level, this is the best estimate of the amount of natural

gas savings caused by the emergency request.11 Using aggregate daily consumption data

provided by Consumers Energy, the total reduction in natural gas consumption from all

sources was about 10 percent, which is in line with our estimates.

11Natural gas consumption at the household level is measured at the monthly level by the utility.
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5.1.1 Robustness checks, alternative specifications, and placebo analysis

In this section and the appendices, we consider alternative behavioral responses (ap-

pendix B) and discuss the sensitivity of the main estimates to estimation at the hourly level

(appendix C), a series of robustness checks and alternative specifications (appendix D), a

placebo analysis of an earlier cold wave with no emergency response (appendix E), and alter-

native Donald and Lang (2007) inference (appendix F). We find little evidence that people

responded to the request via alternative behavioral channels such as turning off the heat or

using smart thermostat settings, and we find that the results are generally consistent across

the sensitivity tests. As such, the results of these checks are located in the appendices.

First, we consider the possibility that households responded to the emergency request in

ways other than the thermostat setting. For instance, households may have turned off the

heat, changed the thermostat mode to “hold” to override previously programmed thermostat

setting changes, changed the thermostat to an automated program designed by Ecobee, or

may have spent more or less time at home because of the emergency request. The smart

thermostat data contains information on whether the furnace was turned off, whether the

thermostat was on “hold” (which selects a constant temperature setting), or whether the

thermostat was utilizing Ecobee’s automation settings which adjust automatically to the

household’s schedule.12 In addition, the thermostat contains a motion sensor that registers

when there is motion in front of the thermostat, which allows us to test whether households

were at home more or less due to the emergency request. We use these variables as outcomes

in the main specification as described in equation 5 and display the estimates in appendix

section B.

We find that the emergency request induced a 2 percentage point increase in “hold”

thermostat settings and a 3 percentage point increase in the use of thermostat automation,

which we interpret as small in magnitude. We find no evidence that households turned off the

12Ecobee’s automation includes “smart recovery mode,” which will adjust the temperature in anticipation
of a user’s normal schedule and usual time it takes to heat or cool the home. For instance, if a user arrives
home from work at 6 pm and typically increases the thermostat setting upon arrival, the smart recovery
program may begin heating the home at 5:45 pm. This is the only automation mode described in the data.
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heat or that households were activating the motion sensor more or less during the event. In

addition, we include all mode variables and motion sensor variables in a robustness check for

the thermostat setting, compliance, and fan regressions, finding that adding these controls

does not substantially impact the average treatment effect estimates in table 2. Overall,

these results suggest that thermostat setting was the main behavioral channel through which

households responded to the request.

Next, we repeat the analysis using hourly data to test the sensitivity of the results to the

choice of time interval in appendix C. We find that the point estimates of our main treatment

effects are almost identical, but the estimates on furnace fan run time are less precise and

are not statistically different from zero. This is because aggregating to four-hour intervals

reduces noise not captured by the fixed effects and controls, improving the precision of the

estimates. The robustness checks in section D test the sensitivity of the average treatment

effects to alternative difference-in-differences specifications, omitting households who join

the sample late or leave early (i.e., using a balanced panel), and allowing for spillovers to

counties bordering Michigan. We find that the estimated effects do not change substantially.

In section E, the placebo test analyzes a cold wave in Michigan that occurred ten days earlier

on January 20-21, 2019, where temperatures dropped by a similar magnitude. We find that

Michigan’s heating behavior remains parallel to the control households during this placebo

event, and that estimation using regression equation 5 with the placebo treatment yields

estimates of zero, suggesting that our findings are not an artifact of differential responses by

Michigan households to cold waves. In our regular specifications, this cold wave is included

in the data and thus serves as a control, lending credibility to the research design. Finally

in section F, we calculate the Donald and Lang (2007) estimate of the treatment effect

(which has valid inference for five clusters), and find comparable and statistically significant

estimates using this approach.
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Figure 5: Event-study coefficients estimated
using regression equation 6 with (a) thermo-
stat setting, (b) compliance, and (c) minutes
of furnace fan run time as the dependent vari-
ables. 95 percent confidence intervals con-
structed from standard errors cluster-robust
to heteroskedasticity.
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5.2 Event-study estimates

Given the repeated requests for reductions in thermostat settings over time, we next

account for a dynamic response in an event-study framework. We estimate a two-way fixed

effects regression using the following specification:

Yi,t = αi + λt +
−1∑

k=−57

βlead
k 1[k = t− g] +

29∑
k=0

βlag
k 1[k = t− g] + γXi,t + δs,h,d + εi,t, (6)

where g is the time period the utility made its first emergency request to households. Thus,

we estimate 57 lead coefficients and 30 lag coefficients to include 10 and a half days of pre-

trends and four days of dynamic treatment effects (including two days after the treatment

ends).13 We hypothesize that prior to the end of working hours, household responses will be

muted and that the largest responses will occur after the Governor’s use of the emergency

text message alert at 10:30 pm. Further, we suspect that the treatment effect persisted

after the “all clear” time due to barriers to receiving the all-clear message or adjusting the

thermostat (e.g., if the home is vacant or all occupants are sleeping).

Figure 5 plots the dynamic treatment effects estimated using the event-study regressions

specified in equation 6 using thermostat setting, compliance with the request, and fan run

time as outcome variables. Leading up to the emergency, the difference in thermostat settings

between Michigan and the control states is typically small and positive when the confidence

interval does not overlap zero. To the extent that the pre-trends are not parallel, we expect

that our event-study estimates may underestimate the treatment effect on thermostat setting

during some time periods, though this effect is likely to be small given the size of the

estimated treatment effect relative to the pre-treatment noise. We see similar results for the

compliance estimates and note that the compliance estimates may also be conservative. The

pre-treatment trends are more noisy for fan run time, but do not display systematic trends,

13Choosing greater or fewer leads and lags does not substantially change the coefficient estimates, but
increases computational cost. We chose the window to allow us to test for the presence of pre-trends,
observe when thermostat settings returned to a normal level after the event, and to keep computational
times reasonable.
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and the confidence interval contains zero for most pre-period estimates.

The first finding of note is that the Governor’s alert was essential to increasing compliance.

Averaging over the event-study coefficients for the eight hours prior to the Governor’s alert,

the utility’s emergency request only resulted in an average additional compliance rate of 0.4

percent, resulting in an average thermostat reduction of just 0.4◦F. Following the Governor’s

alert, the average additional compliance rate was 14.2 percent (peaking at over 20 percent),

resulting in an average thermostat reduction of 1.4◦F (with a peak of 1.7◦F). Given the

utility’s actions of sending emails to customers, posting on social media, and reaching out to

traditional news media, we do not think the lack of responsiveness was solely due to a lack

of reach. While it is possible that the initial lukewarm response was caused by households

not being at home to change the thermostat setting, we see this as unlikely because the

Ecobee smart thermostat setting can be changed remotely via app. Instead, it is likely

that households did not take the request seriously until it became clear that there was a

true emergency. The additional authority of the Governor and the repeated request to

reduce thermostat settings likely increased the salience of the request, inducing additional

compliance.

After the emergency request and before the “all clear,” thermostat settings begin to trend

upward and compliance begins to fall. Sustained compliance is likely increasingly costly, so

participation rates decline toward the end of the event. This trend may also be due to

households choosing low thermostat settings when sleeping and leaving the home for work

in the morning. Upon returning from work, households may increase the thermostat setting

to a slightly higher level. This behavior is similar to the “backsliding” dynamic reported by

Allcott and Rogers (2014) in which households conserve electricity after receiving a home

energy report, but the effect lessens over time. To sustain high levels of compliance in an

emergency, repeated requests are likely necessary.

Another interesting finding is that the effect persists after the “all clear.” This persis-

tence suggests that some households which had programmed their thermostats to reduce

the temperature setting in keeping with the emergency request had not yet re-programmed
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Figure 6: (a): Five-minute sample mean thermostat settings for Michigan and control house-
holds from January 30th 12 pm - January 31st 11:59 pm. (b): Five-minute difference-in-
differences estimate.

them after the all clear due to the fixed cost of interacting with the thermostat. This result

is consistent with previous work that finds that changes in thermostat settings in response

to a cold or hot period tend to persist after the cold or hot period ends (Ge and Ho, 2019).

In addition, one can see that the reductions in furnace fan running time are only tran-

sitory. Because furnaces essentially run at one speed, reducing the thermostat at night or

when out of the home will reduce energy use while the home cools, but upon increasing the

thermostat, the furnace will need to run again and incur a ramp-up cost to increase the

temperature. We can see in the fan run time event study estimates that on January 31st,

there were savings during the early morning and day, but when households returned home

in the evening that furnaces had to run at essentially full intensity to warm the home again.

After the all clear, the estimates return to mean zero more quickly than the thermostat

setting and compliance rate estimates.

In appendix section C, we replicate the event-study analysis at the hourly level. We find

similar results across all three variables, and one can see that the treatment effect begins the

hour of the Governor’s request, providing additional evidence that the Governor’s request

was key to increasing the strength and salience of the nudge. The main difference is that

the pre-treatment coefficients are more noisy, which leads us to favor the four-hour analysis.
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We supplement the event study with a graphical analysis of the five-minute thermostat-

setting data. In figure 6a, we plot five-minute thermostat setting data for Michigan and the

control states from January 29th through February 1st. In figure 6b, we plot a difference-

in-differences estimate of the treatment effect, which we construct as the average difference

between Michigan and the control states in five-minute thermostat settings less same day-

of-week and hour-of-day thermostat settings from before the event. In these figures, one can

only see a clear decline in Michigan thermostat settings after the Governor’s request. In

appendix section E.2, we replicate the five-minute analysis during the placebo cold wave.

The difference-in-differences estimates are zero throughout most of the placebo period other

than a slight increase in thermostat settings for Michigan after the placebo all clear time,

lending credibility to the difference-in-differences estimates in figure 6b.

5.3 Heterogeneity analysis

Next, we analyze support for the Michigan Governor and the effect of the reference

point on household behavior in a triple-differences framework. Our approach analyzes both

forms of heterogeneity in the same estimating equation with additional controls to account

for the possibility that county-level support for the Governor is correlated with baseline

thermostat setting or other demographic factors. We supplement the smart thermostat data

with data on gubernatorial election county vote shares for each state’s most recent election

obtained from the Voting and Elections Collection maintained by the CQ Press (2019). We

include household-level controls available in the Ecobee data as well as demographic controls

at the county level obtained from the American Community Survey (US Census Bureau,

2019). Below, we discuss how we define the baseline thermostat setting and support for the

Governor separately before presenting a single regression equation where we estimate the

effect of baseline thermostat setting and support for the Governor on the treatment effect.

We estimate the effects in the same regression in case homes in Republican-voting counties

have differing baseline thermostat settings than homes in Democrat-voting counties (or vice

versa).
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Households whose thermostats would have been at 65◦F or lower essentially received

information that they were already keeping the thermostat low enough and may have felt

that they did not need to reduce the thermostat further.14 Furthermore, we hypothesize

that the distance from the reference point may also affect household behavior as outlined

in the theoretical framework in section 3. To test our hypotheses, we estimate the effect

of the emergency request allowing for different responses by expected baseline thermostat

settings. We construct a non-parametric estimate of baseline expected thermostat setting

T̂i,t for each household by calculating the household’s sample average thermostat setting

for each day-of-week and time-of-day combination from the pre-treatment period. Denote

T = {[0, 59), [59, 61), [61, 63), ..., [73, 75), [75, 100]} as the collection of 2-degree intervals from

59◦F to 75◦F with binned endpoints for higher and lower temperatures, and b ∈ T the interval

with upper bound b. We interact indicator variables for belonging in each interval with the

treatment variable to create a third difference and estimate heterogeneous effects by baseline

temperature category.

In the same regression, we analyze heterogeneity by political support for the Governor.

The data on gubernatorial election returns is at the county level. In the 2018 election, the dis-

tribution of the Michigan Governor’s county vote share ranged from 31 percent to 73 percent.

We expect the effect of political support to be non-linear so we create 5-percentile indicator

variables between 30 and 75 percent. Denote P = {[30, 40), [40, 45), [45, 50), ..., [70, 75]} as

the collection of a 10-percentile interval between 30 and 40 and 5-percentile intervals be-

tween 40 and 75, and a ∈ P the interval with upper bound a.15 Similarly to the baseline

thermostat setting, we interact indicator variables for belonging in each interval with the

treatment variable.

14This analysis generally treats larger reductions as welfare-improving, but we note that thermostat set-
tings that are too low increase the risk of frozen pipes.

15We combined the 30-35 and 35-40 percentile intervals because only 0.38 percent of households lived in
counties with a Democratic Party vote share between 30 and 35 percent, which lead to extremely imprecise
estimates.
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Thus, our estimating equation is

Yi,t = αi + λt +
∑
b∈T

βbDi,t × 1[T̂i,t ∈ b] + ϕb1[T̂i,t ∈ b] +
∑
a∈P

βaDi,t × 1[Pcounty ∈ a]

+ γ1Di,t × Zi + γ2Xi,t + δs,h,d + εi,t,

(7)

where Zi is a vector of controls for household-level characteristics available in the smart

thermostat data as well as county-level demographics to address correlation between county

vote share and demographics.16 Given our hypotheses, we expect compliance to fall with an

increased baseline expected thermostat setting. Thus, we expect βb to be lower for higher

levels of b. Our theory predicts that the treatment effect will increase with a higher baseline

expected thermostat setting. Moreover, it is possible that very cold baseline households may

increase thermostat setting when introduced to the reference level of 65, thus we expect βb

to be zero or positive for b ≤ 65.17 For the thermostat setting and compliance outcome

variables, we hypothesize that the coefficients on the interaction with vote share βa will be

increasing as Democratic vote share increases and that the opposite will be true for the

fan running outcome variable regression, indicating that the appeal was more effective for

households in counties that supported the Governor’s election.

Table 3 displays the estimates of equation 7 for each outcome variable. The standard

errors are cluster-bootstrapped to incorporate the uncertainty due to sampling error from

estimating the baseline thermostat setting.18 We discuss the vote share and baseline ther-

mostat setting results separately in the following sections.

16From the smart thermostat data, we include square feet of the home, number of occupants, whether
the home is detached or an apartment, and the age of the home. From the ACS, we include county level
median income, median age, population, fraction male, fraction white, fraction with a high school education
or more, and fraction of non-US citizen residents.

17This backfire is called the “boomerang effect” in the social-comparison literature where if a household
receives information that they are consuming less than the average they may decide they were being too
conservative and increase consumption (Allcott, 2011).

18The bootstrap procedure first draws observations with replacement from within household, day of week,
and time period strata to estimate 100 different baseline temperatures for each household, day of week, and
time of day combination. It then samples from this empirical distribution and draws 100 bootstrap samples
clustered at the city level. Ultimately, these standard errors differ very little from clustered standard errors
that ignore the uncertainty from the first-stage estimation.
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Table 3: Results from the estimation of equation 7. Standard errors cluster-bootstrapped
to incorporate the sampling error from estimation of the baseline thermostat setting. The
sample includes observations from January 2nd-January 31st.

(1) (2) (3)
Thermostat setting Thermostat ≤ 65F Fan run time

59 F or lower expected X Treatment 2.68∗∗ 0.095∗∗ 1.32
(0.45) (0.024) (0.83)

59-61 F expected X Treatment 0.95∗∗ 0.085∗∗ 0.57
(0.21) (0.023) (0.64)

61-63 F expected X Treatment 0.57∗∗ 0.036 0.32
(0.13) (0.020) (0.47)

65-67 F expected X Treatment -0.65∗∗ 0.27∗∗ -0.70∗

(0.082) (0.015) (0.31)
67-69 F expected X Treatment -1.37∗∗ 0.33∗∗ -1.15∗∗

(0.096) (0.018) (0.31)
69-71 F expected X Treatment -1.66∗∗ 0.29∗∗ -1.45∗∗

(0.099) (0.017) (0.33)
71-73 F expected X Treatment -1.82∗∗ 0.26∗∗ -1.92∗∗

(0.19) (0.021) (0.55)
73-75 F expected X Treatment -1.82∗∗ 0.25∗∗ -2.23∗

(0.25) (0.022) (0.90)
Higher than 75 F expected X Treatment -1.45∗∗ 0.22∗∗ -2.31

(0.43) (0.022) (1.40)
40-45% Democrat X Treatment -0.44 0.077∗∗ 0.19

(0.29) (0.026) (0.80)
45-50% Democrat X Treatment -0.14 0.036 1.23

(0.25) (0.025) (0.91)
50-55% Democrat X Treatment -0.34 0.048∗ -0.38

(0.21) (0.023) (1.08)
55-60% Democrat X Treatment -0.28 0.051 2.10

(0.36) (0.038) (1.61)
60-65% Democrat X Treatment -0.57 0.095∗ 1.59

(0.40) (0.046) (2.12)
65-70% Democrat X Treatment -0.51 0.078 -0.43

(0.38) (0.051) (1.81)
70-75% Democrat X Treatment -0.87∗ 0.091 2.18

(0.41) (0.047) (2.09)

Observations 1,959,762 1,959,762 1,960,072
R-squared 0.81 0.69 0.76
FE YES YES YES
Hour YES YES YES
Controls YES YES YES
Expected thermostat level YES YES YES

Standard errors cluster-bootstrapped at the city level.
** p<0.01, * p<0.05
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Figure 7: Effect of the emergency request
by expected thermostat setting estimated us-
ing equation 7 with (a) thermostat setting,
(b) compliance, and (c) minutes of furnace
fan run time as the dependent variables. 95
percent confidence intervals constructed from
bootstrapped standard errors that account
for first-stage estimation of expected ther-
mostat setting and are cluster-robust to het-
eroskedasticity.

5.3.1 Reference point effect

The coefficients on the interaction between expected thermostat setting and treatment

in table 3 are the difference in the average treatment effect by expected thermostat setting

relative to households in time periods with an expected thermostat setting of 63-65◦F (the

omitted category). We find that households in time periods with baseline thermostat settings

at or below 65◦F were less responsive to the appeal or even increased their thermostat setting.

As the baseline thermostat setting increases above 65◦F, the magnitude of the response

increases and then decreases at higher temperatures. Compliance with the emergency request

falls as the baseline thermostat setting increases above the requested level and then decreases

for baseline temperatures 69◦F and above. Households with baseline thermostat settings just

below 65◦F were more likely to increase the thermostat setting to above 65◦F, coming out of

compliance. The estimates for the fan run time variable show that for the coldest baseline
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thermostat setting, fan running times increased relative to the base category. For baseline

thermostat settings above 65◦F, fan run time decreased relative to the base category, with

the largest effect (though not statistically significant) for the highest baseline thermostat

settings.

One concern we had was whether these estimates were an artifact of statistical mean

reversion rather than a meaningful pattern.19 To test this alternative hypothesis, we estimate

equation 7 using the placebo cold wave event. Appendix section E.3 displays the results of the

placebo analysis. The estimates from the placebo analysis are the same sign as the estimates

from the polar vortex, but the magnitude of the estimated coefficients in the placebo analysis

are substantially smaller than during the polar vortex. Furthermore, the placebo estimates

are relatively flat as the baseline category gets further away from 65◦F. Thus, we conclude

that mean reversion may play a small role in the main heterogeneity estimates but the effect

is not large enough to alter our conclusions in this section. As an additional robustness

check, we replicate the analysis on hourly data in appendix C and find similar results to our

primary analysis.

Figure 7 displays the average partial effects of treatment on the outcome variables by

baseline thermostat setting.20 When the expected thermostat setting is less than 65◦F, the

appeal does not decrease the thermostat setting and is likely to increase the thermostat

setting in the coldest homes. On average, when the expected thermostat setting is below

65◦F, the appeal corresponds with households increasing the thermostat above 65◦F. These

perverse effects are consistent with the appeal anchoring low thermostat settings to the norm

of 65◦F. Alternatively, the appeal may have increased the sense of danger, causing households

to either store heat in their home in case of an outage or to stay home when they typically

would have left for work and reduced the thermostat setting.

Households with high baseline thermostat settings were also less likely to fully comply

19That is, do our estimates merely reflect that households with high or low temperatures in the past are
mechanically more likely to have average temperatures when measured later?

20Formally, the average partial effect of treatment by baseline thermostat setting T̂i,t ∈ b is

E[Yi,t|Wi,t, T̂i,t ∈ b,Di,t = 1] − E[Yi,t|Wi,t, T̂i,t ∈ b,Di,t = 0], where Wi,t is a vector of all other control
variables in equation 7.
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with the reference level of 65◦F, which may be caused by several mechanisms with different

implications. One potential mechanism is that the request may have appeared out of reach,

which suggests that a reference level can induce larger contributions of effort for households

near the reference level, but it discourages effort for households far away from that reference

level. For households with expected thermostat settings above 75◦F, the average partial

effect on compliance rate is the lowest of those above the reference level; however, the average

partial effect on fan run time was the second largest, and in general higher baseline thermostat

settings resulted in larger energy savings. This suggests that those households that did

comply generated substantial energy savings, although the heterogeneity of this effect leads to

a wide confidence interval. Another potential explanation may be that households that prefer

warm temperatures have stronger preferences for deviating from their preferred thermostat

setting. We see this as unlikely, given the large average reductions in thermostat settings

upon the request but cannot rule it out. Without variation in the reference level, we are

cautious not to draw more firm conclusions.

5.3.2 Vote share effect

The coefficients on the interaction between county vote share and treatment in table 3

are the difference in the average treatment effect for households in counties with a given

level of support for the Governor relative to households in counties where the Governor’s

vote share was 30-40% (the omitted category).21 The estimates show that the average

thermostat reduction and compliance rate is higher in all counties relative to those with

the lowest Governor’s vote share. In addition, the treatment effects are generally increasing

in magnitude as the Governor’s vote share increases. The results indicate that households

in the counties that supported the Governor the most reduced thermostats by up to 0.9◦F

more on average and had a compliance rate 9 percentage points higher relative to the least

supportive county (although the difference in compliance rate was not statistically different

from zero). Despite this, the estimates of the effect on fan run time are the opposite of the

21Appendix section 5.3 replicates this analysis using the placebo cold wave and does not find the same
patterns in the estimated coefficients.
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Figure 8: Effect of the emergency request by
Governor’s vote share estimated using equa-
tion 7 with (a) thermostat setting, (b) compli-
ance, and (c) minutes of furnace fan run time
as the dependent variables. 95 percent con-
fidence intervals constructed from standard
errors cluster-robust to heteroskedasticity.
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expected sign and are imprecise with all confidence intervals containing zero. Given that fan

run time is a function of underlying energy efficiency of the furnace and home, we believe

that the fan estimates reflect unobserved differences in energy efficiency that are correlated

with political affiliation.

Figure 8 displays average partial effects of treatment on the outcome variables by Gov-

ernor’s vote share.22 The average partial effect on thermostat setting and compliance is

increasing in the Governor’s vote share. On average, the appeal induced about a 7 percent

compliance rate in the counties most opposed to the Governor and a 16 percent compliance

rate in the counties most in support of the Governor (difference = 9.1%, p-value = 0.053).

In the counties most opposed to the Governor, the appeal induced a 0.9◦F decrease in ther-

mostat settings while the most favorable counties saw a 1.7◦F decrease (difference = 0.9◦F,

p-value < 0.05). While this effect is large (the same size as the average treatment effect), it

does not outweigh the increased compliance rates generated by the Governor’s amplification

of the appeal on social media and via the emergency text alert system, without which there

may have been no response from households at all.

Thus, we conclude that support for the Governor is correlated with a stronger response to

the public appeal, although the implications for energy use are unclear. We caution against

interpreting these estimates causally, but our findings are consistent with distrust arising

out of affective political polarization. In the increasingly polarized political environment of

the United States (Iyengar et al., 2019), a public appeal may be met with defiance rather

than compliance. An alternative explanation is that political ideology may be correlated

with willingness to contribute to public goods or thermostat setting behavior more broadly.

Given our inability to distinguish the effect of polarization from political ideology, we cannot

reject either explanation.

22The average partial effect of treatment by baseline county-level vote share Pcounty ∈ a is
E[Yi,t|Wi,t, Pcounty ∈ a,Di,t = 1] − E[Yi,t|Wi,t, Pcounty ∈ a,Di,t = 0], where Wi,t is a vector of all other
control variables in equation 7.
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6 External validity

Here, we discuss how likely our results are to generalize to non-smart thermostat house-

holds and to future energy crises. Our research design takes advantage of the exceptional

nature of the emergency event and availability of the smart thermostat data during this pe-

riod to construct well-identified estimates of the effect of the emergency request on behavior,

but it may be unclear to what extent these unique data and event are representative of other

energy users in other events. To orient our discussion, we make use of the “SANS” conditions

for generalizability suggested by List (2020). In the SANS framework, the external validity

of a study can be assessed by discussing selection, attrition, naturalness, and scaling. In

our context, there was very little attrition from the sample (we assess the sensitivity of the

results to keeping and including those who enter or leave the sample early in appendix D),

which leaves selection, naturalness, and scaling for discussion. In our discussion, we find

little evidence that selection plays a role in our results. Given that the emergency request

is a natural experiment and that similar emergency requests are made during other energy

emergencies, we believe the intervention is natural and likely to be representative of inter-

ventions in other energy contexts. Finally, we discuss the ability of this intervention to scale

vertically to the grid (ISO) level, and horizontally across states and other energy emergen-

cies. We believe our results are likely to generalize to other energy emergencies based on the

availability of a wireless emergency alert system, the political climate, and the frequency of

repeated requests which may result in habituation to the alerts.

6.1 Selection

Our primary concern about generalizability is the selection into owning an Ecobee ther-

mostat and sharing data used for this study. As other studies have noted (Burkhardt et al.,

2019; Blonz et al., 2021), most papers in the residential energy literature rely on data from

self-selected households—this paper is no different. Given that our treatment is unrelated to

selection, selection into the sample does not affect the internal validity of the research design,
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Table 4: Estimates of equation 5 by smart thermostat adoption date. The sample includes
observations from January 2nd-January 31st.

Thermostat setting estimates by smart thermostat adoption date
(1) (2) (3) (4)

VARIABLES Pre-2016 adopters 2016 adopters 2017 adopters 2018 adopters

Michigan x Post -1.152** -1.223** -1.027** -1.081**
(0.111) (0.107) (0.146) (0.151)

Constant 66.865** 67.434** 67.433** 67.544**
(0.106) (0.059) (0.051) (0.062)

Observations 163,033 372,872 714,402 846,655
R-squared 0.696 0.701 0.717 0.710
Weather controls YES YES YES
Household FE YES YES
Time FE YES

Robust standard errors clustered at the state level.
** p<0.01, * p<0.05

but may be relevant to the external validity of the estimates. Previous work has found that,

on observable characteristics, the Ecobee Donate-Your-Data households are comparable to

the average household in the nationally representative Residential Energy Consumption Sur-

vey sample, though the Ecobee households have slightly more members (Meier et al., 2019).

Another study argues that the Ecobee smart thermostat features do not differ substantially

from other smart thermostats (Blonz et al., 2021). Despite being comparable on observable

characteristics, there remains a concern that households that choose to share data may be

more willing to contribute to other public goods such as compliance during an emergency.

Furthermore, the Ecobee is marketed as being eco-friendly, which may also be correlated with

pro-social attitudes. Finally, smart thermostat features differ from traditional thermostats.

The largest and most relevant difference is that smart thermostat users can adjust the ther-

mostat remotely via app, which reduces the cost of compliance. Brandon et al. (2021) find

little evidence that smart thermostats on their own cause households to consume energy

differently relative to households with conventional thermostats, but the concern remains

that these households may find it easier to comply with the request. If these hypotheses
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about selection are correct, our estimates from smart-thermostat household behavior may

overstate compliance relative to non-smart-thermostat households.

We assess the degree to which selection might affect our estimates in two ways. First, we

compare our average treatment effect to estimates of the reduction in residential natural gas

consumption calculated using aggregate data provided by Consumers Energy, and second

we consider differential responses to the emergency request by early adopters of the Ecobee

thermostat. During the event, forecasted natural gas demand using realized weather condi-

tions was 3.3 billion cubic feet on January 30th and 2.9 billion cubic feet on January 31st.

After all reductions in consumption were accounted for, actual consumption was 3.0 billion

cubic feet on January 30th and 2.6 billion cubic feet on January 31st, implying a 10.7% and

10.5% reduction in daily consumption from all sources (residential and non-residential). In

a mostly-residential area of Detroit, Consumers Energy claimed to see a 10% reduction in

energy consumption. Using furnace fan run time as a proxy variable for energy consumption,

we estimate a 6% reduction. This estimate is similar but smaller in magnitude, which is the

opposite of what we would expect if selection was substantially affecting the estimates.

The second test of selection examines whether early adopters of the smart thermostats

responded differently to the request than late adopters. In the smart thermostat data, we

observe the date the smart thermostat account became active. We hypothesize that early

adopters of smart thermostats are more highly selected relative to the general population,

whereas late adopters are more representative. If early adopters have differential responses

to the emergency request, this evidence would suggest that smart thermostat users are not

representative of the general population.

Table 4 displays the results of estimating the main specification from equation 5 on sam-

ples segmented by smart thermostat adoption year using thermostat setting as the outcome

variable.23 The estimates are similar across adoption years, and none of the differences are

statistically different from zero. Thus, to the extent that early adopters are more highly

23We pool households who adopted in 2016 or earlier, and we do not include households that adopted
the smart thermostat in January 2019, as any differences may be attributed to lack of experience with the
thermostat.
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selected, the treatment effect does not vary by that selection.

Overall, our diagnostics suggest a limited role for selection. Hypothetically, all of the

selection effects point to a potentially larger responsiveness of households in our data to the

requests, but we do not find any evidence that suggests our estimates will not generalize out

of sample.

6.2 Naturalness

Given that this is a natural experiment, the treatment subjects are subjected to a natural

source of variation in the emergency request. Moreover, emergency appeals with requested

compliance levels are a standard response in the toolkit of public utilities responding to emer-

gency shortages. For example, California’s Flex Alert system regularly includes a thermostat

setting target of 78◦F.24 Since this polar vortex in 2019, thermostat-targeted emergency ap-

peals have been used in Texas and California in response to extreme heat events in 2021

and 2022.25 Emergency appeals of this form are used widely, though future research should

analyze the effect of variation in the reference level and requests for fixed reductions from

the baseline (e.g., “please reduce thermostat settings by 5◦F”).

6.3 Scaling

The Michigan emergency appeal was moderately successful at the state level, suggesting

that similar appeals can be successful at a large scale. Here, we discuss which policy design

elements are necessary for similar emergency appeals to scale vertically to the grid (ISO)

level, horizontally from state to state, and to future emergencies. Our analysis focuses on

the availability and use of the wireless emergency alert system, the political climate, and the

frequency of requests.

Our event-study analyses in section 5.2 suggest that the Governor’s messaging and use

24See https://flexalert.org/.
25Texas ERCOT request to increase thermostats to 78◦F: https://www.ercot.com/news/release?id=8b772e9e-

51d0-4c3c-e653-1e5079f28e89. California Governor request to increase thermostats to 78◦F:
https://twitter.com/CAgovernor/status/1567316274849660928.
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of the wireless emergency alert system were critical to achieving compliance. Previous stud-

ies of requests for voluntary reductions have demonstrated low compliance rates when the

request is made only by the utility or by local news media (Holladay et al., 2015). Thus, a

wide-reaching message from an authority figure is crucial for scaling this effect. In other con-

texts, these appeals will be limited by the reach of the emergency communications systems.

Areas with low media and technology penetration or with limited cell phone service may

see limited success of emergency appeals. Similarly, the size of the treatment effect peaked

mid-day, after people had time to respond, suggesting that the timing of the messaging is

pivotal in future emergencies. ISOs spanning multiple states should have emergency commu-

nications relationships with state emergency agencies to gain access to key communications

infrastructure.

Our estimates suggest that political polarization may undermine the authority of a

leader’s request for emergency compliance. A request from a popular official or institu-

tion may receive more favorable responses than an unpopular official or institution. Given

that the Governor of Michigan had only just assumed office after winning the election with

53% of the vote and a 10% margin of victory, we believe that the effect of political affiliation

could be much stronger in other contexts.

Finally, we caution that similar emergency appeals may not scale when made repeatedly.

Ito et al. (2018) find that repeated conservation nudges result in habituation or desensi-

tization, reducing their effectiveness over time. The Michigan polar vortex appeal was a

unique emergency and to our knowledge was the only such appeal in recent years. Thus,

the stimulus was novel, likely increasing the salience of the request. In states such as Texas

and California where requests are relatively commonplace, habituation may decrease the

request’s effectiveness.
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7 Conclusion

This paper studies an acute natural gas shortage during the 2019 polar vortex in Michi-

gan. During near-record- low temperatures, a fire at a compressor plant resulted in natural

gas demand that nearly outpaced supply. In response, the utility requested that house-

holds voluntarily conserve natural gas, and the Governor of Michigan subsequently issued

an emergency text alert that requested households voluntarily reduce thermostat settings to

65◦F.

We use smart thermostat data to analyze consumer responses to the emergency request,

finding robust evidence of voluntary compliance with the request. Using a difference-in-

differences strategy with four control states, we obtain estimates of the average treatment

effect. On average, households lowered their thermostats by 1.1◦F, roughly a 25% reduction

of the typical variation in the average thermostat setting. 10 percent of households complied

with the request fully by reducing their thermostats to 65◦F or lower, while 22 percent of

household thermostat settings were already at or below the threshold. Finally, we find evi-

dence that the emergency request reduced furnace fan run times (our best proxy for natural

gas consumption) by 1.5 minutes per hour; a 6% decrease. This reduction is smaller than the

10% reduction in all consumption of natural gas we calculate using aggregate consumption

data provided by the utility. Our estimate is comparable with reductions in energy con-

sumption observed in field experiments that use moral suasion to induce conservation (see

e.g., Brandon et al. (2018)), but falls short of field experiments that use price incentives to

induce conservation (see e.g., Ito et al. (2018)).

Our analysis highlights the importance of wide-reaching emergency messaging for govern-

ments and utilities. An event study analysis reveals that prior to the Governor’s announce-

ment, the utility’s emergency request only induced 0.4 percent of households to reduce

thermostat settings to 65◦F or less. After the Governor’s amplification of the emergency

request, the fraction of households in compliance with the request increased to 20 percent

at its height. The emergency directives communicated via social media and news media

suffered from low visibility and were likely lost in the large amount of other content on
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these platforms. As the emergency progressed, compliance with the request waned as house-

holds likely found it increasingly costly to maintain low thermostat settings. In addition, we

find evidence of persistence in low thermostat settings in the day after the emergency. These

habits appeared to be driven by programmed thermostat settings left in place by households.

The particular phrasing of the emergency request around the reference point of 65◦F

played a large role in determining household behavior. We identify three perverse effects of

the reference point. First, households that typically heat at 65◦F or lower did not reduce

thermostats in response to the emergency request. Second, those that typically have the

lowest thermostat settings even increased the thermostat setting after receiving the request.

Third, those with the highest thermostat settings were less likely to comply with the request.

For households with thermostat settings typically above 65◦F, the average treatment effect at

first increases and then decreases with distance from the reference point. These findings are

consistent with our theoretical model, which suggests that a nudge with a compliance target

will not achieve the least-cost reduction in energy consumption because of the difference in

marginal incentives on either side of the reference point created by the target.

Setting a more aggressive target trades off a larger effect of compliance with the cost

of compliance, which increases defiance. This suggests that a particular reference point

may induce a larger response. While this natural experiment did not provide the necessary

variation to determine the highest-impact reference points in this context, these could be de-

termined via purposeful experimentation. Furthermore, smart thermostat technology offers

the possibility for targeted requests and automated compliance. Alternatively, requests for

a uniform reduction in thermostat setting may induce broader compliance than a uniform

compliance goal because they avoid the problems driven by users in the tails of the energy

consumption distribution.

Political affiliation also correlated with compliance. Households in counties that sup-

ported the Governor the least in the 2018 election responded the least to the request, and

households in counties that supported the Governor the most had high levels of compliance.

Thus, it appears that political polarization can lead to defiance from outsider groups; how-
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ever, this does not outweigh the benefits of the Governor’s amplification of the emergency

appeal via social media and the text alert system.

Ultimately, the 2019 Michigan polar vortex crisis was resolved by a combination of res-

idential and non-residential demand reductions and supply side efforts. After the crisis,

the Governor of Michigan issued an executive order transferring energy emergency response

management from the Michigan Energy Agency to the Michigan Public Service Commission

(MPSC) and commissioned an assessment of Michigan energy resources from the MPSC

(MPSC, 2019a). The report includes an overview of energy supply systems for natural gas,

electricity, and propane, as well as a section on energy emergency management. The section

on emergency management states in general terms that utilities can pursue a variety of cur-

tailment strategies to reduce demand, including voluntary requests and rate increases, but

the guidelines are vague.

This paper shows that emergency demand response programs can help provide stabil-

ity during times of crisis, but the efficacy of the program depends heavily on its design

and implementation. While the emergency request in Michigan was largely successful and

the worst-possible outcome was averted, the low overall level of compliance and perverse

reference-point effects highlight the need for well-designed emergency measures to reduce

energy demand. To be successful, a voluntary emergency demand-response program needs

a communication platform that enables it to reach households, can induce compliance from

households that receive the request, and that has a demonstrated effectiveness so that util-

ities and balancing authorities know the size of the demand reductions to expect. Rather

than relying on voluntary requests with unknown efficacy, utilities should develop, test, and

optimize programs that can be called upon when needed.

To avoid compliance issues, utilities can invest in voluntary programs that eliminate

compliance barriers by purchasing centralized control of energy consumption long before

emergency events occur. Interruptible-load demand response programs are not new, but ap-

plications involving smart thermostats may provide a new opportunity to enhance emergency

management. For households who do not wish to surrender control or who have conventional
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thermostats, incentive-based emergency curtailment program design remains critical.

We see several results as likely to generalize beyond energy consumption. First, compli-

ance with requests is likely to be higher when the messenger is a trusted public figure. This

effect may be reduced by political polarization or distrust of institutions. Second, a low-cost

method of widespread emergency notification such as the cell phone alert system is key for

communicating timely requests during a crisis. Emergency communication via social media

is likely to suffer from low reach and must compete with other content for visibility. The in-

centives for compliance also matter. Requests for uniform compliance goals with targets are

likely to be too ambitious for some and too conservative for others. Instead, a simple request

for a marginal contribution to the public good or a menu of marginal contributions that can

be dialed up or down avoids this problem without the need to explicitly tailor requests. Fi-

nally, this event highlights the need for testing emergency planning and incorporating design

elements that explicitly consider economic incentives and behavioral responses.
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A Social media posts
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(a) https://twitter.com/ConsumersEnergy/
status/1090692811081551885

(b) https://www.facebook.com/85543026043/
videos/357785638397997/

(c) https://twitter.com/GovWhitmer/
status/1090807363811065857

(d) https://twitter.com/ConsumersEnergy/
status/1091086892592959495

Figure 9: Social media appeals.
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B Tests of alternative behavioral responses

Here, we consider potential alternative behavioral responses to the emergency request

outside of the thermostat setting. Households may have altered the thermostat mode or

turned the furnace off in order to comply with the emergency request. In addition, the

emergency request may have either induced households in Michigan to stay at home during

the emergency or to seek shelter elsewhere, potentially differently than households in the

control states. The smart thermostat data contain variables on the thermostat’s mode and

whether the thermostat’s motion sensor detects motion. Our thermostat mode variables con-

tain information on whether the furnace is turned off, set to “hold” (which keeps a constant

thermostat setting), or set to a smart automation setting. The Ecobee thermostat’s smart

automation feature “smart recovery” can pre-heat or cool a home based on a household’s

typical behavior (for example, if a person typically arrives home from work at 6:00 pm and

increases the thermostat setting, the smart recovery feature may automatically begin heating

the home at 5:45 pm in anticipation of arrival).

We test whether the emergency event induced households to set the thermostat to “hold,”

use the automation feature, turn the furnace off, and spend more or less time at home by

using these variables as outcomes in our main specification (equation 5). Each of these

variables is a binary indicator equal to one if the thermostat was in the indicated mode or

detected motion during the period, making these linear probability models. Table 5 displays

these estimates. We estimate a 2 percentage point increase in thermostat settings on “hold”

and a 3 percentage point increase in the use of automation, which we interpret as small

changes. We find no statistically significant change in whether the furnace was turned off or

whether motion was detected by the thermostat.

Although we do not see large responses via these channels, we test the robustness of

our thermostat setting estimates to controlling for thermostat mode and the motion sensor

indicator in the thermostat setting, compliance, and fan run time regressions. Table 6

contains these estimates. While the furnace fan estimate is slightly larger than the estimates

in the main text (table 2), the estimates are overall similar.
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Table 5: Estimates of regressions from equation 5 using alternate potential outcome variables.
The sample includes observations from January 2nd-January 31st.

Potential alternative behavior responses
(1) (2) (3) (4)

VARIABLES Thermostat hold Thermostat automation Furnace off Motion detected

Michigan x Post 0.02* 0.03* -0.00 -0.00
(0.01) (0.01) (0.00) (0.00)

Constant 0.30** 0.20** 0.01** 0.58**
(0.01) (0.00) (0.00) (0.01)

Observations 2,144,796 2,144,796 2,144,796 2,144,796
R-squared 0.51 0.30 0.69 0.55
Weather controls YES YES YES YES
Household FE YES YES YES YES
Time FE YES YES YES YES
DOW × HOD × state YES YES YES YES

Robust standard errors clustered at the state level.
** p<0.01, * p<0.05

Table 6: Estimates of the regressions from equation 5 controlling for thermostat mode and
motion sensor. The sample includes observations from January 2nd-January 31st.

Controlling for thermostat mode and automation settings
(1) (2) (3)

VARIABLES Thermostat setting Thermostat ≤ 65F Fan run time

Michigan x Post -1.07** 0.10** -1.63*
(0.12) (0.01) (0.50)

Constant 66.89** 0.32** 16.37**
(0.20) (0.01) (1.04)

Observations 2,126,336 2,126,336 2,135,114
R-squared 0.74 0.53 0.76
Weather controls YES YES YES
Household FE YES YES YES
Time FE YES YES YES
Day of week × hour of day × state YES YES YES
Thermostat modes YES YES YES

Robust standard errors clustered at the state level.
** p<0.01, * p<0.05
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Table 7: Estimates of the regressions from equation 5 using hourly data from January 2nd-
January 31st.

Two-way fixed effects regressions
(1) (2) (3)

VARIABLES Thermostat setting Thermostat ≤ 65F Fan run time

Michigan x Post -1.116** 0.126** -1.420
(0.134) (0.008) (0.521)

Constant 67.439** 0.248** 25.121**
(0.039) (0.002) (0.755)

Observations 8,474,273 8,474,273 8,509,460
R-squared 0.666 0.476 0.631
Weather controls YES YES YES
Household FE YES YES YES
Time FE YES YES YES
Day of week × hour of day × state YES YES YES

Robust standard errors clustered at the state level.
** p<0.01, * p<0.05

C Hourly analysis

In this section, we replicate the analyses from the main text using hourly data rather

than data aggregated to four-hour intervals. Table 7 contains average treatment effect esti-

mates, figure 10 displays the event-study estimates, and table 8 displays the heterogeneity

estimates. We find that the choice of time frequency makes very little difference for the

main estimates, but the four-hour intervals reduce noise in the pre-period of the event-study

analysis, resulting in cleaner pre-trends. Given the reduction in noise, we favor the four-hour

analysis displayed in the main text.

D Robustness checks

In this section, we test the sensitivity of the average treatment effect estimates to specifi-

cation, sample selection, and potential spillovers. We find that the estimates are not affected

by these potential confounders.
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Figure 10: Event-study coefficients estimated
on hourly data using regression equation 6
with (a) thermostat setting, (b) compliance,
and (c) minutes of furnace fan run time as
the dependent variables. 95 percent confi-
dence intervals constructed from standard er-
rors cluster-robust to heteroskedasticity.
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Table 8: Results from the estimation of equation 7 using hourly data from January 2nd-
January 31st. Standard errors cluster-bootstrapped to incorporate the sampling error from
estimation of the baseline thermostat setting.

(1) (2) (3)
Thermostat setting Thermostat ≤ 65F Fan run time

59 F or lower expected X Treatment 2.70∗∗ 0.064∗∗ 0.75
(0.40) (0.023) (0.76)

59-61 F expected X Treatment 1.01∗∗ 0.045∗ 0.41
(0.17) (0.019) (0.58)

61-63 F expected X Treatment 0.59∗∗ 0.019 -0.0024
(0.099) (0.017) (0.48)

65-67 F expected X Treatment -0.68∗∗ 0.25∗∗ -0.61
(0.063) (0.012) (0.34)

67-69 F expected X Treatment -1.43∗∗ 0.34∗∗ -1.32∗∗

(0.078) (0.016) (0.38)
69-71 F expected X Treatment -1.72∗∗ 0.29∗∗ -1.79∗∗

(0.085) (0.012) (0.38)
71-73 F expected X Treatment -1.87∗∗ 0.25∗∗ -2.14∗∗

(0.15) (0.014) (0.52)
73-75 F expected X Treatment -1.87∗∗ 0.25∗∗ -2.63∗∗

(0.25) (0.019) (0.89)
Higher than 75 F expected X Treatment -1.40∗∗ 0.21∗∗ -2.86

(0.40) (0.019) (1.53)
40-45% Democrat X Treatment -0.43 0.069∗ 0.28

(0.27) (0.029) (0.71)
45-50% Democrat X Treatment -0.11 0.034 1.32

(0.27) (0.029) (0.99)
50-55% Democrat X Treatment -0.33 0.054∗ -0.22

(0.23) (0.027) (0.97)
55-60% Democrat X Treatment -0.25 0.049 2.43

(0.30) (0.039) (1.56)
60-65% Democrat X Treatment -0.51 0.085 2.05

(0.40) (0.055) (1.86)
65-70% Democrat X Treatment -0.53 0.086 -0.22

(0.43) (0.059) (1.76)
70-75% Democrat X Treatment -0.82 0.088 2.65

(0.42) (0.051) (1.84)

Observations 7,811,227 7,811,227 7,812,552
R-squared 0.80 0.69 0.64
FE YES YES YES
Hour YES YES YES
Controls YES YES YES
Expected thermostat level YES YES YES

Standard errors cluster-bootstrapped at the city level.
** p<0.01, * p<0.05
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Table 9: Alternate difference-in-differences specifications with temperature as the outcome
variable. The sample includes observations from January 2nd-January 31st.

Thermostat setting DID
(1) (2) (3) (4) (5)

VARIABLES Model 1 Model 2 Model 3 Model 4 Model 5

Michigan -0.588 -0.591
(0.356) (0.349)

Post 1.203** 1.054* 0.858** 0.675**
(0.180) (0.287) (0.149) (0.110)

Michigan x Post -0.992** -1.171** -1.196** -1.100** -1.052**
(0.180) (0.223) (0.161) (0.135) (0.129)

Constant 67.460** 68.055** 68.266** 67.572** 67.472**
(0.356) (0.597) (0.091) (0.062) (0.047)

Observations 2,126,410 2,126,338 2,126,336 2,126,336 2,126,336
R-squared 0.008 0.012 0.687 0.705 0.708
Weather controls YES YES YES YES
Household FE YES YES YES
Time FE YES
Day of week YES
Hour of day YES

Robust standard errors clustered at the state level.
** p<0.01, * p<0.05
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Table 10: Alternate difference-in-differences specifications with compliance as the outcome
variable. The sample includes observations from January 2nd-January 31st.

Thermostat ≤ 65F LPM DID
(1) (2) (3) (4) (5)

VARIABLES Model 1 Model 2 Model 3 Model 4 Model 5

Michigan 0.049 0.049
(0.025) (0.025)

Post -0.081** -0.074* -0.061** -0.043**
(0.010) (0.023) (0.009) (0.007)

Michigan x Post 0.093** 0.108** 0.111** 0.102** 0.098**
(0.010) (0.014) (0.007) (0.008) (0.007)

Constant 0.221** 0.163* 0.142** 0.211** 0.220**
(0.025) (0.045) (0.014) (0.006) (0.004)

Observations 2,126,410 2,126,338 2,126,336 2,126,336 2,126,336
R-squared 0.004 0.007 0.471 0.497 0.502
Weather controls YES YES YES YES
Household FE YES YES YES
Time FE YES
Day of week YES
Hour of day YES

Robust standard errors clustered at the state level.
** p<0.01, * p<0.05
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Table 11: Alternate difference-in-differences specifications with fan run time as the outcome
variable. The sample includes observations from January 2nd-January 31st.

Fan minutes running DID
(1) (2) (3) (4) (5)

VARIABLES Model 1 Model 2 Model 3 Model 4 Model 5

Michigan -2.503* -2.997*
(0.559) (0.894)

Post 10.254** 1.409* 0.661** 0.898**
(0.735) (0.419) (0.128) (0.102)

Michigan x Post -2.206* -0.933 -1.338* -1.450* -1.483*
(0.735) (0.591) (0.451) (0.498) (0.483)

Constant 20.593** 26.604** 25.473** 26.080** 25.225**
(0.559) (1.479) (0.568) (0.445) (0.669)

Observations 2,135,188 2,135,116 2,135,114 2,135,114 2,135,114
R-squared 0.020 0.071 0.737 0.749 0.751
Weather controls YES YES YES YES
Household FE YES YES YES
Time FE YES
Day of week YES
Hour of day YES

Robust standard errors clustered at the state level.
** p<0.01, * p<0.05
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First, we examine the effect of specification choice on the difference-in-difference esti-

mates. In the main text, we display results using a two-way fixed effects approach. Tables 9

- 11 display alternative specification coefficient estimates for each outcome variable. Column

1 displays estimates using a standard difference in differences specification with indicator

variables for being in Michigan, being in the post-treatment period, and the interaction

of these two. Column 2 adds time-varying controls for temperature and humidity, column

three replaces the treatment group indicator with household fixed effects, and column four

replaces the post-treatment indicator with day-of-week and time of day indicator variables.

The results do not differ substantially across all specifications for each outcome variable.

Table 12: Estimates of the regressions from equation 5 on a balanced panel of households.
The sample includes observations from January 2nd-January 31st.

Robustness check: Estimated on balanced panel
(1) (2) (3)

VARIABLES Thermostat setting Thermostat ≤ 65F Fan run time

Michigan x Post -1.09** 0.10** -1.53*
(0.13) (0.01) (0.52)

Constant 67.40** 0.23** 25.25**
(0.04) (0.00) (0.80)

Observations 1,850,760 1,850,760 1,850,760
R-squared 0.71 0.50 0.75
Weather controls YES YES YES
Household FE YES YES YES
Time FE YES YES YES
Day of week × hour of day × state YES YES YES

Robust standard errors clustered at the state level.
** p<0.01, * p<0.05

Next, we consider the possibility of sample selection. In the sample, 6.1% of households

enter late or leave early. This is best thought of as a sample selection problem as we do not

observe the households before or after these points. In addition, 5.2% of observations are

missing data on thermostat setting or weather data. Because entry, exit, and missingness are

unrelated to the treatment, we consider the missing observations to be “missing completely at

random” and are therefore unrelated to the error term (Wooldridge, 2007). Nonetheless, we
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Table 13: Estimates of the regressions from equation 8, allowing the treatment to potentially
spill over into border counties. The sample includes observations from January 2nd-January
31st.

Spillovers
(1) (2) (3)

VARIABLES Thermostat setting Thermostat ≤ 65F Fan run time

Michigan x Post -1.08** 0.10** -1.47*
(0.13) (0.01) (0.52)

Border county x Post -0.12 0.00 -0.07
(0.22) (0.01) (0.60)

Constant 67.43** 0.22** 24.82**
(0.04) (0.00) (0.79)

Observations 2,126,336 2,126,336 2,135,114
R-squared 0.71 0.50 0.75
Weather controls YES YES YES
Household FE YES YES YES
Time FE YES YES YES
Day of week × hour of day × state YES YES YES

Robust standard errors clustered at the state level.
** p<0.01, * p<0.05

interpolate missing values and drop households that enter the sample late or leave early and

estimate the average treatment effect using a balanced panel of households using the two-way

fixed effects specification of equation 5. Table 12 displays the results of this estimation. The

estimates are slightly smaller than those in the main text but are not substantially different.

Our next robustness check allows for the possibility of spillovers to counties bordering

Michigan. Because the text alerts go to cellphones based upon the closest cell phone tower,

it is possible that households living near the border in Indiana and Ohio were also treated.

Illinois and Wisconsin do not border Michigan’s lower peninsula. 3.4 percent of Ohio and

11.6 percent of Indiana sample households live in counties bordering Michigan. We estimate

the following regression, which allows for a spillover treatment effect for households living in

border counties:

Yi,t = αi + λt + βDi,t + σSi,t + γXi,t + δs,h,d + εi,t, (8)
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where Si,t is a treatment variable equal to one for households in counties that border Michi-

gan’s lower peninsula during the post-treatment period. The estimated coefficient σ on Si,t

should be equal to zero if there are no spillovers into the bordering counties. Table 13 dis-

plays the estimated coefficients using all three outcome variables. In each regression, the

estimated spillover coefficient is small and the confidence interval contains zero. The coeffi-

cient on the main treatment variable is not substantially different from the estimates in the

main text. We have experimented with modeling potential spillovers as far as two counties

away from the border and we do not see much difference in the estimated coefficients on

the main treatment variable, so we do not display the results here. In addition to these em-

pirical results, searches of the archives of Toledo, Ohio’s main newspaper, The Blade, using

the keywords “polar vortex” and “natural gas” does not turn up any news coverage of the

Michigan event. These results suggest that any potential spillover effects are not affecting

the estimates.

E Placebo analyses

Ten days before the polar vortex, Michigan experienced a similar cold wave that did

not coincide with a supply-side emergency causing an emergency request for voluntary ther-

mostat reductions. Figure 3a displays mean daily temperatures for sample households in

Michigan in January 2019. Temperatures on January 20-21 dropped from 25◦F to below

10◦F, making these days a good placebo event for the January 30-31 emergency. Because

there was no emergency request to reduce thermostat settings on the 20th and 21st, we

would expect to see no difference in heating behavior for Michigan and control states.

E.1 Average treatment effects

Figure 11 displays average thermostat settings, fraction of households with thermostat

settings at or below 65◦F, and fan running times for Michigan and control states from January

19-22. Unlike in the main text, we do not see a change in heating behavior between Michigan
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Figure 11: Sample average values of the
outcome variables for treatment and control
households, January 19 - 22. Panel (a) plots
average thermostat settings, panel (b) plots
the fraction of households with thermostat
settings at or below 65◦F, and panel (c) plots
the average furnace fan run time in each time
period. The vertical dashed line indicates
2:00 pm, the beginning of the placebo event.

and the controls states after the placebo treatment time.

We then estimate the two-way fixed-effects specification of regression equation 5 for the

placebo event. To do so, we include all observations observed between January 1st and

January 21st, 2019 and treat 2:00 pm on January 20th as the placebo treatment time. Table

14 displays the results of this estimation using thermostat setting, an indicator variable for

having the thermostat at or below 65◦F, and fan running time as outcome variables. As

expected, the estimates are close to zero. The only statistically significant estimate suggests

that Michigan households increased thermostat settings by 0.06◦F, which we interpret as a

precisely estimated zero. This placebo procedure demonstrates that households in Michigan

respond similarly to cold spells as households in the control states absent a request to reduce

energy consumption.
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Table 14: Estimates of the regressions from equation 5 on the sample of households observed
between January 1st and January 21st, treating January 20th at 2:00 pm as the placebo
treatment time. We expect the estimates from this placebo estimation to be close to zero.

Placebo estimates from Jan 20-21 cold wave
(1) (2) (3)

VARIABLES Thermostat setting Thermostat ≤ 65F Fan run time

Michigan x Post 0.06* -0.00 -0.08
(0.02) (0.00) (0.39)

Constant 67.24** 0.23** 23.64**
(0.06) (0.01) (0.57)

Observations 1,413,411 1,413,411 1,419,364
R-squared 0.72 0.52 0.77
Weather controls YES YES YES
Household FE YES YES YES
Time FE YES YES YES
Day of week × hour of day × state YES YES YES

Robust standard errors clustered at the state level.
** p<0.01, * p<0.05

E.2 Five-minute thermostat settings

In figure 12a, we plot five-minute thermostat setting data for Michigan and the control

states between 12:00 pm on January 20th and 11:59 pm on January 21st. In figure 12b, we

plot a difference-in-differences estimate of the placebo treatment effect, which we construct

as the difference between five-minute thermostat setting for Michigan and control states

during the event minus the average difference in same time-of-day and day-of-week five-

minute thermostat settings before the event. In these figures, we see a discrete increase

in thermostat setting in the five-minute periods beginning at 7:00 pm and 12:00 am for

both treatment and control households. These discrete changes correspond to commonly

programmed times for the thermostat to automatically change. Other than in a few five-

minute periods on January 21st, the measured treatment effect is zero in the placebo period.

These treatment effects are driven by seemingly spurious five-minute jumps in the average

thermostat setting for Michigan households. Overall, these placebo plots demonstrate the

validity of the difference-in-differences approach and verify that discrete increases at 7:00
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Figure 12: (a): Five-minute sample mean thermostat settings for Michigan and control house-
holds from 12:00 pm January 20th - 11:59 pm January 21st. (b): Five-minute difference-in-
differences estimate.

pm and 12:00 am are common and not artifacts of the emergency event.

E.3 Heterogeneity analysis

One concern that we had was that the estimates from the heterogeneity analysis in the

main text reflect statistical reversion to the mean rather than a meaningful pattern of results

for the sub-groups (particularly for the baseline thermostat-setting results). To test this, we

estimate the heterogeneity regression analysis from equation 7 during the placebo period.

Table 15 displays the estimated coefficients and bootstrapped standard errors that account

for the first-stage estimation of the baseline thermostat setting. The magnitude of the

estimated coefficients in the placebo analysis are almost all two to five times smaller than

during the polar vortex and do not display as clear trends as you move away from 65◦F.

Thus, we conclude that mean reversion may play a small role in the main heterogeneity

estimates but the effect is not large enough to alter our conclusions in section 5.3.
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Table 15: Results from the estimation of equation 7 using the placebo cold wave. The sample
includes observations from January 2nd-January 21st.

(1) (2) (3)
Thermostat setting Thermostat ≤ 65F Fan run time

59 F or lower expected X Treatment 1.59∗∗ 0.091∗∗ 0.23
(0.39) (0.026) (0.79)

59-61 F expected X Treatment 0.50∗ 0.061∗∗ 0.089
(0.20) (0.022) (0.62)

61-63 F expected X Treatment 0.41∗∗ 0.023 0.014
(0.12) (0.018) (0.48)

65-67 F expected X Treatment -0.29∗∗ 0.16∗∗ -0.23
(0.073) (0.015) (0.36)

67-69 F expected X Treatment -0.53∗∗ 0.19∗∗ -0.088
(0.077) (0.016) (0.36)

69-71 F expected X Treatment -0.66∗∗ 0.19∗∗ -0.34
(0.088) (0.015) (0.38)

71-73 F expected X Treatment -0.63∗∗ 0.17∗∗ -0.27
(0.13) (0.016) (0.60)

73-75 F expected X Treatment -0.99∗∗ 0.17∗∗ -0.38
(0.23) (0.021) (0.92)

Higher than 75 F expected X Treatment -0.81∗ 0.17∗∗ 0.40
(0.41) (0.021) (1.49)

40-45% Democrat X Treatment 0.12 0.0026 0.73
(0.27) (0.026) (0.86)

45-50% Democrat X Treatment -0.16 -0.018 0.71
(0.25) (0.026) (1.02)

50-55% Democrat X Treatment -0.20 0.012 0.55
(0.23) (0.023) (1.06)

55-60% Democrat X Treatment -0.057 0.0090 1.47
(0.40) (0.035) (1.61)

60-65% Democrat X Treatment 0.028 0.0056 2.41
(0.37) (0.050) (1.67)

65-70% Democrat X Treatment -0.35 -0.011 1.35
(0.41) (0.051) (1.77)

70-75% Democrat X Treatment -0.39 0.030 1.57
(0.43) (0.040) (1.94)

Observations 1,302,219 1,302,219 1,302,511
R-squared 0.85 0.75 0.78
FE YES YES YES
Hour YES YES YES
Controls YES YES YES
Expected thermostat level YES YES YES

Standard errors cluster-bootstrapped at the city level.
** p<0.01, * p<0.05
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F Donald and Lang inference

Here, we use an aggregation approach inspired by Donald and Lang (2007) to estimate

the average treatment effects and provide valid inference for five clusters. In our approach,

we average our outcome variables to the state level s and estimate the following ordinary-

least-squares regression:

Ys,t = α + λt + βDs,t + γXs,t + δs,h,d + εs,t, (9)

where Ys,t = Ȳi,t and Xs,t = X̄i,t are the state sample averages. Under standard exogeneity

assumptions and large state-cluster group sizes (implying normality of εs,t via the central

limit theorem) estimation of β in equation 9 is consistent and standard inference is valid

(Wooldridge, 2010). When there are equal cluster sizes and a balanced panel, the aggregated

Donald and Lang estimates are exactly equal to the estimates from the individual-level

regression, but in our case the unbalanced panel and unequal cluster sizes will result in a

slight difference in estimates.

Table 16 displays the Donald and Lang estimates of the average treatment effect for each

outcome variable. The estimated average treatment effects are slightly smaller than those

in the main text, but are not substantially different. Importantly, each estimated effect is

statistically significant even under the conservative Donald and Lang inference test, which

alleviates concerns that clustering at the state level may result in over-rejection of the null

hypothesis.
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Table 16: Donald and Lang estimation of average treatment effects with valid inference for
very few clusters. The sample includes observations from January 2nd-January 31st.

(1) (2) (3)
VARIABLES Thermostat setting Thermostat ≤ 65F Fan run time

Michigan x Post -1.008** 0.104** -0.981**
(0.052) (0.005) (0.344)

Constant 67.220** 0.233** 23.824**
(0.079) (0.008) (0.516)

Observations 900 900 900
R-squared 0.990 0.989 0.985
Weather controls YES YES YES
Household FE YES YES YES
Time FE YES YES YES
Day of week × hour of day × state YES YES YES

Donald and Lang standard errors reported.
** p<0.01, * p<0.05
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