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Abstract

Afforestation is a popular strategy to mitigate climate change. When successful, af-
forestation programs can produce important co-benefits beyond carbon sequestration,
which have significant implications for the net social benefit of carbon abatement
through afforestation. In 2003, one of the largest afforestation programs in India was
implemented in Rajasthan state. Using a yearly, district-level panel from 1997 to 2017,
we estimate the effects of this program on the agricultural sector using two-way fixed
effects and synthetic difference-in-differences approaches. Our findings suggest that
the afforestation program led to robust, statistically significant increases in rainfall
and agricultural production, area, and yield. We discuss the implications of our find-
ings for afforestation as a climate mitigation strategy.
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1 Introduction

Afforestation projects have long been promoted as a climate change mitigation strategy

due to forests’ carbon sequestration properties (Nilsson and Schopfhauser, 1995; Sedjo and

Sohngen, 2012). A recent report commissioned by the International Panel on Climate Change

(IPCC) estimates the carbon removal potential of afforestation/reforestation to be between

0.5-10.1 gigatons of CO2-equivalent per year (Shukla et al., 2019).1

Forests, however, generate many additional social and environmental benefits beyond

just carbon sequestration. In particular, Plantinga and Wu (2003) find the conversion of

agricultural land to forest results in reductions in several agricultural externalities—e.g., soil

erosion and nitrogen run-off—suggesting these co-benefits “are an important factor for coun-

tries to consider in designing a portfolio of climate mitigation strategies.” Similarly, the effect

of forests on local rainfall levels represents a pathway through which forests may indirectly

provide a crucial ecosystem service to the agricultural sector. Forests affect rainfall in a

variety of ways and increased (reduced) forest cover can positively (negatively) impact rain-

fall levels. Recent climate research finds that afforestation in semi-arid regions significantly

increases moisture penetration and precipitation (Yosef et al., 2018). Dense forest cover

intercepts rainfall by slowing down clouds (Brauman et al., 2010) and filters fog droplets

causing fog precipitation (Prada et al., 2009). Forests also contribute to rainfall directly, as

extra moisture on the surface of leaves evaporates. This process, known as transpiration,

increases moisture levels in the surrounding air, which is then saturated faster, increasing

rainfall (Staal et al., 2018).2 Conversely, deforestation can disrupt the hydrological cycle

due to the loss of transpiration-related rainfall, which can have detrimental effects on local

agriculture (Leite-Filho et al., 2021; Paul et al., 2016; Lawrence and Vandecar, 2015). These

insights suggest important co-benefits to the agricultural sector through increased rainfall

that should be accounted for when calculating the net social benefit of carbon sequestration

through afforestation.

Also of relevance is the stylized fact that agriculture has been the largest driver of defor-

estation globally (Myers, 1994; Angelsen, 1999). Conventional wisdom is that expansion of

agriculture—especially in rapidly developing economies—necessarily leads to the destruction

of forests, and conversely, that preserving (or reclaiming) forest area comes at an opportunity

1As a semantic distinction, ‘afforestation’ generally refers to planting trees on the land that had not previ-
ously been forested, whereas ‘reforestation’ refers to planting trees on the land that had recently been forested
but was converted to other uses (like agriculture). For our purposes, this distinction is inconsequential. For
brevity, we use the term ‘afforestation’ throughout.

2Transpiration in plants depends on several factors, including leaf area, stem diameter, soil temperature,
sapwood area, age of the plant, tree height, and canopy cover (Vertessy et al., 1995; Köstner et al., 2002;
Wang et al., 2011).
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cost of forgone agricultural production. However, if increased forest cover yields private ben-

efits to farmers through positive effects on rainfall patterns, the inverse relationship between

forests and agriculture may not be as clear-cut as is generally believed. To our knowledge,

these issues have thus far not been studied by economists, and little evidence of such effects

is available in the literature.

This paper examines whether, and to what extent, a major afforestation program in

India (described below) had any effect on local agricultural activity. Given the complex

relationships involved, the theoretical net impact of an afforestation program on agriculture

is ambiguous. If the resulting increase in forest cover led to an increase in rainfall, we might

expect to observe positive impacts on the local agricultural sector. Conversely, forests occupy

land that might be used for agriculture and potentially divert labor and capital resources

away from the agricultural sector. Thus, the empirical challenge is to determine which effect

dominates.

We study the Rajasthan Forest and Biodiversity Project (RFBP), launched in 2003 with

financial assistance from the Japan International Cooperation Agency (JICA).3 The explicit

goal of the RFBP was to increase forest cover and preserve biodiversity in the rainfall catch-

ment area (drainage basin) of Rajasthan’s Aravali ranges. JICA extended a long-term loan

of roughly 9000 million yen (USD 80 million) to the Rajasthan state government to facili-

tate the implementation of various initiatives to recover forest areas within these historically

forested parts of the state. In contrast to a top-down approach, the RFBP followed a bottom-

up approach that involved farmers and the local community, who were trained to plant and

care for tree saplings on previously cultivated land, making them stakeholders with a direct

interest in the project’s success or failure.4 As such, participating farmers likely had greater

awareness of changes in rainfall patterns and could respond accordingly in terms of their

productive activities.

The RFBP provides a particularly rich context to study the effects of afforestation on

rainfall and local agriculture in an important developing economy. Over the past half-century,

the Indian sub-continent has experienced significant changes in its climate and weather

patterns. Especially concerning has been a consistent reduction in monsoon rains over time

(Meher-Homji, 1980; Gupta et al., 2005; Kuttippurath et al., 2021). Historical analyses

have found a trend of increasing drought frequency and severity across much of India over

the course of the 20th Century (Sharma and Goyal, 2020; Mallya et al., 2016). Projections

3https://www.jica.go.jp/india/english/office/others/c8h0vm00004cesxi-att/brochure 03.pdf
4Many afforestation programs follow a top-down approach in which local communities are not involved in

project operations and maintenance. Officials charged with oversight of such top-down programs may not be
aware of, or pay attention to, important project co-benefits such as increased rainfall. A detailed description
of the RFBP is provided below.
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into the future indicate this trend will likely continue (Bisht et al., 2019). Emblematic of

this adverse shift was the drought of 2002, considered by many to have been an exceptional

natural disaster. Rainfall across India dropped 19 percent below normal levels. 29 percent of

the geographical area suffered a ‘moderate’ or ‘severe’ drought. Some regions were impacted

worse than others. In particular, the districts in Rajasthan state received 64 percent less

rain compared to historical averages.5 Long-term analysis of rainfall in Rajasthan indicates

a persistent decline in monsoon rains, increasing warm days, and increasing likelihood of

drought in the region (Mundetia et al., 2015; Singh, 2016; Pingale et al., 2014).

Although this extreme change in Rajasthan’s monsoon pattern can be attributed to

several factors, one of the most important drivers has been rapid deforestation over the past

several decades (Kundu et al., 2017). The primary drivers include increased agricultural land

use to feed a rapidly expanding population, urbanization, and industrialization (Sajjad and

Iqbal, 2012; Basu and Nayak, 2011; Singh et al., 2017). As a key motivation for the RFBP,

the government of Rajasthan recognized that this loss of forest and biodiversity had adversely

impacted the state through reduced water resources, negative impacts on agriculture and

economic livelihood, and increased pollution, among other factors.

Our study empirically estimates the local effects of the RFBP on rainfall and three key

agricultural indicators: cultivated area, total production, and yield per hectare. We hypoth-

esize that additional forest cover increased rainfall via the interception and transpiration

mechanisms described previously. However, although this increased rainfall may have had

positive effects on local agriculture, converting scarce land and resources from agriculture to

forests may have had a countervailing effect. Thus, our hypothesized net effect of the RFBP

on agricultural outcomes is ambiguous. Finally, we expect any effects of the program to be

delayed and increase over time as forest area increases and the planted trees grow. To test

these hypotheses, we analyze data on rainfall, cultivated area, total agricultural production,

and agricultural yield at the district level in India from 1997 to 2017, and condition on

a variety of other factors including labor and capital inputs, subsidies, irrigation, and the

availability of credit.

The isolated implementation of the RFBP creates a natural experiment that allows us to

identify the effect of afforestation on rainfall and agricultural outputs. Our empirical strategy

compares outcomes in districts in Rajasthan before and after the implementation of the

program with districts outside of Rajasthan in a difference-in-differences (DID) framework.

We estimate the yearly average treatment effect of the program using a two-way fixed effects

(TWFE) estimator and a synthetic DID approach following Arkhangelsky et al. (2021).

Both estimation strategies produce similar results, but the synthetic DID approach produces

5https://reliefweb.int/report/india/india-southwest-monsoon-2002-end-season-report
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parallel pre-trends in the outcome variables between treatment and control units that our

empirical strategy requires for an unbiased estimate of the treatment effect. Finally, we use

an event-study specification to estimate the variation in the treatment effect over time.

We find a delayed positive impact of the RFBP on rainfall in Rajasthan. The average

treatment effect estimated from our preferred specification indicates a statistically significant

2% increase in rainfall relative to our control group. However, our event study model indi-

cates that in the years directly after implementation, rainfall was at or below normal from

2003-2009 but starting in 2010 was as much as 3-4% higher in some years. In addition, we find

that the agricultural sector in Rajasthan grew following the implementation of the RFBP,

with growth concentrated after 2010. Point estimates of the average treatment effects from

our preferred specification suggest agricultural production increased by 24%, mainly due to a

22% increase in cultivated area. The event study specification suggests these increases were

concentrated six to thirteen years after the first trees were planted, which is consistent with

our expectation that the effects of afforestation would depend on the growth of the plantings.

The average treatment effect on yield suggests an increase of roughly 5%, and although this

estimate is not statistically significant, in our event study model point estimates of treatment

effects in several individual years are positive and statistically significant.

These results suggest afforestation provides a positive ecosystem service to the agricul-

tural sector through increased rainfall and directly contradicts the conventional wisdom that

afforestation necessarily displaces agriculture. More broadly, calculations of the net social

benefit of afforestation/reforestation programs as a carbon sequestration approach to miti-

gate climate change should account for these effects; otherwise, the net social benefit of such

programs is likely to be significantly underestimated.

The rest of the paper is organized as follows. Section 2 discusses relevant literature to

which our work contributes. Section 3 presents a background of forest conservation efforts

in India and provides further details about the RFBP. Section 4 describes the data used

to establish empirical evidence. In Section 5, we discuss our identification strategy, which

includes exposition of the logic of the synthetic DID approach. Section 6 discusses our

results. Section 7 provides a brief discussion about the limitations of the study and the

policy implications of our findings.

2 Review of Relevant Literature

This paper contributes primarily to two veins of scholarly literature. First, it contributes to

research on the economic and environmental benefits of afforestation/reforestation programs.

Second, it adds to the literature studying the effects of international assistance programs on
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agricultural practices in developing economies.

2.1 The Benefits (and Costs) of Afforestation

Generally, analyses of afforestation/reforestation programs have focused on two broad cat-

egories of benefits: environmental benefits (carbon sequestration, mitigation of biodiversity

loss) and economic development benefits (poverty reduction, provision of valuable ecosystem

services) (Gregersen et al., 2011; Chazdon et al., 2017). While clearly not mutually exclusive,

these categories provide an intuitive guide by which to parse the related literature. Our in-

vestigation contributes to this literature by demonstrating that an afforestation program can

provide important co-benefits to agriculture not typically accounted for in standard carbon

sequestration cost-effectiveness calculations such as those reviewed in Richards and Stokes

(2004). These co-benefits are higher in the countries where the United Nations REDD+

programs were implemented (Ojea et al., 2016; Chhatre et al., 2012).6

Forest cover has geophysical impacts including reducing ambient air and soil tempera-

tures, retaining moisture and supporting microbial processes in soil, reducing erosion, and

increasing precipitation (Farley et al., 2005; Savva et al., 2010; Betts, 2011; Jin and Wang,

2018). Deforestation is considered to be a primary driver of biodiversity loss (Barlow et al.,

2016; Giam, 2017), and ecological research has further shown that this loss may be irre-

versible even after reforestation (Dupouey et al., 2002). The degree to which afforestation

supports biodiversity gains is still a matter of scholarly debate (Brockerhoff et al., 2008;

Gómez-González et al., 2020).

Carbon sequestration via forests is a widely supported climate mitigation strategy (Sedjo

and Sohngen, 2012; Gren and Aklilu, 2016). Yet, local temperature benefits may be rela-

tively small (Arora and Montenegro, 2011). Whether forest-based carbon sequestration is

cost-effective depends on interactions between agricultural land markets, forest and timber

product markets, and the carbon sequestration potential of geographically viable tree species

(Richards and Stokes, 2004). Afforestation programs targeted towards carbon sequestration

may not have a permanent effect if areas shifted from agriculture to forests are allocated

back to agriculture in response to increased opportunity costs (Alig et al., 1997).

The relationship between forests and agriculture is complex and multi-faceted, and the

economic benefits (and costs) of afforestation programs are still being studied by economists

and policy analysts (Dhubháin et al., 2009; Jones and McDermott, 2018; Li and Izlar, 2021).

Afforestation efforts may reduce total agricultural land area but increase agricultural in-

tensity (Mather and Thomson, 1995). When weighing alternative land-use choices in the

6Reducing Emissions from Deforestation and forest Degradation (REDD+) framework:
https://redd.unfccc.int/files/redd infographic.pdf
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presence of afforestation incentives, rural households’ decisions to engage in forestry or agri-

culture depend on relative profitability and risk (Démurger and Yang, 2006). Some studies

suggest greater forest area can positively impact household income (Moktan et al., 2016),

while others have found no significant effect (Lu et al., 2020; Cuong et al., 2019; Bopp et al.,

2020). Especially in an agrarian, developing economy like India, afforestation programs must

provide farmers with an alternative source of income or are otherwise unlikely to garner much

response. Forests cannot alleviate rural poverty without income diversification and market

accessibility (Wangdi and Tshering, 2006). Subsidies and financial support for upfront costs

encourage participation (Bopp et al., 2020; Lu et al., 2020; Ruseva et al., 2015; Powlen and

Jones, 2019), but other factors including education, annual income, tenure security/property

rights, family size, and gender play a crucial role in program acceptance (Dolisca et al., 2006;

Chang et al., 2021; Legesse et al., 2018).

2.2 International Assistance and Agriculture

A complete discussion of the role of official development assistance in supporting agriculture

is beyond the scope of this paper, and the RFBP is not an agricultural assistance program

per se. Yet, our findings make an important novel contribution to this literature. Specifically,

we show how a bilateral assistance program directed toward afforestation and biodiversity

yielded an economically significant co-benefit through enhancing ecosystem services bene-

ficial to the agricultural sector. The key intuition is that official development assistance

support for agriculture need not always be direct; indirect benefits to agriculture may be

achieved through support for other, non-market environmental goods and services.

Agriculture is central to economic development, as it is typically the sector with the

strongest comparative advantage in the early stages of development, is the dominant source

of employment in the world’s poorest regions, and is crucial for providing food security

and adequate nutrition to vulnerable populations (Byerlee et al., 2009; Dethier and Effen-

berger, 2012; de Janvry and Sadoulet, 2020). Thus, agriculture has been a major focus of

development assistance by organizations such as the Food and Agriculture Organization of

the United Nations (FAO) and the International Fund for Agricultural Development (IFAD),

among others (Hallam, 2011; Lowder et al., 2012; Lele et al., 2021). Climate and sustainabil-

ity considerations have also become increasingly salient, marking another channel through

which developing nations can benefit from international aid to agriculture (Kuyvenhoven,

2008; Pingali, 2010; Kotchen and Costello, 2018; Ssozi et al., 2019; Amadu et al., 2020).

As of 2017, India ranked second globally in total receipts of development aid to the

Agriculture, Forestry, and Fishing sectors (Lele et al., 2021). Around two-thirds of India’s
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population is dependent on agriculture and allied sectors for livelihood. There are many rea-

sons to expect this flow of aid to continue for the foreseeable future. Sustainable agriculture

will be crucial for India’s continued development, not only to feed its growing population

of more than 1.35 billion but also to reduce poverty. Climate change is adversely affect-

ing India’s agricultural sector through multiple pathways including increasing temperatures,

more severe droughts, stronger storms, and sea level rise, with heterogeneous effects across

regions (Senapati et al., 2013). Agriculture in developing countries is primarily dependent

on rainfall due to the low intensity of irrigation, and a study in neighboring Nepal has

shown that greater uncertainty over rainfall patterns discourages young workers from choos-

ing agriculture as an occupation (Menon, 2009). Along with the higher quality inputs and

infrastructure made affordable by agricultural assistance programs, increased availability of

information and the opportunity to participate in cooperatives plays a major role in adopting

sustainable agricultural practices (Caviglia and Kahn, 2001). Finally, agricultural assistance

promotes innovation and substitution toward less water-intensive crops (Singh et al., 2014;

Zachariah et al., 2020).

3 RFBP Background

India’s forest policy can be traced back to the India Forest Act of 1927, which was the first

attempt at forest conservation in India. A new Forest Act was adopted in 1980, empowering

both the state and central governments to manage forest resources. State forest departments

(SFDs) act as agencies of the central government to prepare forest management plans within

state boundaries and preserve public forest resources. SFDs coordinate with forest develop-

ment corporations for day-to-day operations and trade and develop rules and regulations for

the management of forests under their jurisdiction. The central government implemented

additional policies for the management of forest resources in the National Forest Policy

of 1988 (NFP), including a first-ever comprehensive policy on compensatory afforestation,

restoration, and improvements in forest land.7 Following the adoption of the NFP, India

increased its forest cover from 9.7% of the total geographical area in 1988 to 23.4% by 2005.

Over this period, forest cover in Rajasthan remained at around 9.5%.8

To increase local community involvement in forest conservation, the Indian central gov-

ernment developed the Joint Forest Management (JFM) program in 1990 as part of NFP;

27 states have implemented this program to date (World Bank, 2006). The National Af-

7https://pib.gov.in/newsite/erelcontent.aspx?relid=57051
8Authors’ calculations. See: https://forest.rajasthan.gov.in/content/raj/forest/en/resources/forest-

statistics/area—land1/total-forest-area-by-legal-status-of-rajasthan.html
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Figure 1: RFBP project Timeline

forestation and Eco-Development Board extend grants to various initiatives under JFM.

The bottom-up approach of JFM enables decentralized forest management at the local level.

Increased participation of local communities supported the NFP’s objective of sustainable

livelihood for populations dependent on forest and related sectors (Patra, 2015).

The RFBP was an ambitious initiative by the Rajasthan state government, implemented

under the JFM framework in cooperation with JICA. Rajasthan’s SFD organized the RFBP

around the operations and management of local projects, forming Village Forest Protection

and Management Committees (VFPMCs) to assist officers and field functionaries. Over one

thousand VFPMCs were formed for this project. SFD recruited at least one person from

each household in the village as a member of these committees. VFPMCs are responsible for

the day-to-day operation and maintenance of projects in their specific area, and for alerting

forest officials about illegal grazing, encroachment, or tree felling. Each committee was given

Rs. 100,000 to form a dedicated fund to support forest O&M activities. VFPMCs were able

to ensure the success of the RFBP by reducing incidences of illegal grazing and harvesting,

and by increasing people’s awareness and ownership of the project locally.

Figure 1 shows a broad timeline of the RFBP’s phases; of primary interest for our study

is the year 2003, during which the program was first implemented, as we consider this to be

the year in which treatment began. In 2003, JICA extended a loan of 9,054 million yen to

the Rajasthan state government to implement the RFBP. Originally planned for 61 months

from March 2003 to March 2008, the project overran by 17 months, ending in June 2010. A

total of 10,058 million yen was ultimately disbursed.

The RFBP’s primary emphasis was on increasing forest cover in the rain catchment areas

of Rajasthan’s hilly districts. Figure 2 shows the 18 selected districts: 16 in the Aravalli

Hills area, and two in the Indira Gandhi Nahar Project (IGNP) area.9 These districts were

9These districts were: Ajmer, Alwar, Banswara, Bhilwara, Bundi, Chittorgarh, Dausa, Dungarpur,
Jaipur, Pali, Rajsamand, Sawai Madhopur, Sikar, Sirohi, Tonk and Udaipur in Aravalli Hills area, and
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Figure 2: RFBP project map. Treated districts in green.

selected based on climate, geology, and vegetation, among other factors. In these regions,

the primary livelihood of residents depends on forest resources. Deforestation and uncertain

monsoons have threatened the sustainability of these populations’ lifestyles.

Figure 3 details the cumulative progress of the RFBP in terms of forest cover. Planting

began in 2004, covering 20,000 hectares and totaling just under 10 million trees. The bulk

of planting occurred between 2005 and 2006. By 2007, a total of 50 million trees covering

over 100,000 hectares had been planted. While data on the type of trees planted are not

available, native trees in Rajasthan include teak, acacia, date palm, fig, Indian gooseberry,

karira, khabar or toothbrush tree, khjri, and Banyan tree. Most of these species grow

relatively rapidly—about 6-8 meters in 4-6 years—and the rate of transpiration varies by

size and season.

Bikaner and Jaisalmer in IGNP area.
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Figure 3: Cumulative afforestation progress in treated districts

Table 1: RFBP Project Costs

Item Cost (Mill Yen) Percentage
Plantation Work 5626 55.9 %
JFM Consolidation 766 7.6%
Biodiversity Conservation 900 8.9%
Community Extension in plantation 36 0.4%
Training 48 0.5%
Project Overheads (research,
planning, monitoring, administration etc.)

2682 26.7%

Total 10058 100%
Source: JICA’s Project Appraisal Document, Project Completion Report

Table 1 presents a detailed project cost breakdown. Almost 56 percent of the cost was

incurred for planting trees.10 The second major cost category, JFM consolidation, included

three types of cost: income-generation activities, the establishment of community funds, and

small-scale infrastructure development.11 The third largest cost category consisted of activ-

10This included reforestation of barren hills, rehabilitation of degraded forest, and fuelwood plantation
in the Aravalli hill districts. In the more arid IGNP area, the land was used for projects like canal-side
plantation, dune stabilization, block plantation, and pasture development.

11VFPMC members were encouraged to form ‘self-help’ groups (SHG) with initial seed money of Rs.
20,000 sponsored by projects for income-generation activities to reduce the impact on livelihood due to
displacement caused by the afforestation program. By the RFBP’s completion, over 1400 groups were

11



ities related to biodiversity conservation12 and moisture conservation. Nearly 2600 moisture

conservation measures were undertaken, including building ‘check dams’ and ‘anicuts’ on

rivers and waterways.13 Community extension, comprising under 0.4% of the project bud-

get, mainly involved the provision of 20 million seedlings, which were then sold to farmers

between 2003-2010. Finally, to inculcate practical knowledge and skills on planting and

tree-felling techniques, farmers, NGOs, VFPMC members, teachers, elected representatives

of village councils, forest guards, and range officers were trained on best practices. Table 2

provides a breakdown of the scope of stakeholders trained. The remaining funds were utilized

on project overheads such as research, planning, monitoring, and administration expenses.14

Table 2: Stakeholder training

Training Courses Persons Trained
VFPMC member 21441
Elected leaders of a village level body, teachers and NGOs 7251
Farmers and village elders 15036
Forest guards and cattle guards 4229
Range officers’ orientation course 378
Officers training within country 5
Source: JICA’s Project Appraisal Document, Project Completion Report

4 Data

To estimate the impact of the RFBP on rainfall and agricultural outcomes, we obtained data

on district-level rainfall for 1997-2015 and agricultural outcomes for 1997-2017 from the In-

ternational Crop Research Institute for the Semi-Arid Tropics (ICRISAT). The ICRISAT

data include information on precipitation, agricultural area (hectares), agricultural produc-

tion (tons), and agricultural yield (tons per hectare) for more than 560 districts from 20

states in India. These 20 states constitute 95 percent of India’s population and 99 percent

of agricultural production. We are interested in the effect of the RFBP on the agricultural

engaged in income-generation activities from minor forest produce (MFP) such as honey, firewood, and
fodder collection from the forest and processing it. Each household participating in SHG was allowed a
specific quota of MFP. To facilitate early adoption among villages, a small-scale infrastructure development
plan funded the construction of community water tanks, reservoirs, community centers, bus stops, and the
rehabilitation of public watersheds.

121,600 ha was set aside for natural rehabilitation, two sites were developed as biological parks, and several
400-ha areas were developed as eco-tourism sites.

13These are obstructions built across water channels to control erosion and provide watering holes for
animals. Both check dams and anicuts increase the moisture-retaining capacity of surrounding soil and are
considered to be effective soil and moisture conservation measures.

14https://www2.jica.go.jp/en/evaluation/pdf/2012 ID-P148 4.pdf
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areas to test for potential crowding out effects of forests on agriculture, whereas production

and yield allow us to test for effects on productivity and ecosystem services.

We supplement the outcomes data with district-level demographic data from the So-

cioeconomic High-resolution Rural-Urban Geographic Dataset on India (SHRUG), which

includes variables such as population, the fraction of rural and urban population, literacy

rate, and Scheduled Castes and Scheduled Tribes (SCST) population (Asher et al., 2019).15

We also control for various sources of irrigation using district-level data on irrigated farm

areas by source, including canals, tube wells, tanks, other wells, and other sources. Irrigation

data were acquired from ICRISAT.

Agricultural credit is another important factor for the farming sector, as it facilitates the

procurement of inputs and provides working capital for managing produce. This working

capital is obtained from banks and other financial intermediaries by mortgaging assets (e.g.,

land). We control for access to agricultural credit using state-level data on the number of

commercial banks and the number of rural bank branches. We also control form agricul-

tural credit extended by financial institutes such as banks, credit unions, and NBFCs using

outstanding debt at the end of each financial year. Data on banking facilities and agricul-

tural credit were collected from the Reserve Bank of India’s Handbook of Statistics on Indian

States (2022).

To control for various subsidy programs that may have affected agricultural outcomes,

we obtained data on state-level allocations of federal and state government agricultural sub-

sidies through the Rashtriya Krishi Vikas Yojana (RKVY) program, which began in 2007.

We also control for another important agricultural subsidy program called The Integrated

Scheme of Oilseeds, Pulses, Oil Palm and Maize (ISOPOM) which was implemented from

2004-05 onwards across India. These subsidies are provided to farmers on the purchase of

inputs such as seeds, fertilizers, pesticides, electricity, and machinery from a government-

registered agricultural cooperative agency.16 Statewise expenses on the ISOPOM scheme

were acquired from the Department of Agriculture and Farmers Welfare. We also add con-

trols for National Food Security Mission (NFSM) district-wise programs for wheat, rice, and

cereals, which were launched in 2007.17 Mahatma Gandhi National Rural Guarantee Scheme

Act (MNREGA) was implemented in 2006 onwards in a phased manner. This scheme pro-

vides 100 days of guaranteed work to people in rural areas on government projects. We use

15The SHRUG data are collected at the village level from population census in 1991, 2001, 2011, and 2021.
We aggregate the data to the district level and we interpolate the data for years between censuses, following
the interpolation approach taken by Greenstone and Hanna (2014).

16These agencies sell the inputs to farmers at subsidized prices, then receive the difference in subsidized
price and actual price in the form of subsidy from the government.

17NFSM was launched in 2007-08 to boost the production of rice, wheat, and pulses in India. This scheme
aims to ensure food security for the growing population of India. It was launched in 482 districts of 19 states.

13



district-wise coverage of this scheme as a control in our analysis.

The synthetic DID approach requires a balanced panel, so we limit our sample to districts

with non-missing observations for all variables over the entire sample period.18 Table 3

displays summary statistics comparing Rajasthan to the rest of India. Rajasthan is an

agricultural desert state that experiences less rainfall relative to the rest of India. More

land is devoted to agriculture in Rajasthan than in the rest of the country, but agricultural

production and yields are comparatively low. The literacy rate is slightly below average,

as is the fraction of paved roads (our proxy for income). Finally, the fraction of SCST and

rural/urban populations are on par with the rest of India.

5 Empirical Strategy

Our empirical approach compares treated districts with untreated districts before and after

the implementation of the RFBP in both TWFE and synthetic DID specifications. We

denote Yi,t as the outcome of interest in district i ∈ {1, ..., N} in year t ∈ {1997, ..., 2017}.
We assume that each outcome evolves according to the following latent factor variable model:

Yi,t = µ+ αi + βt +
2017∑

t=2003

Wi,tτt + εi,t, (1)

where µ is an intercept, αi are district-specific fixed effects, βt are year-specific shocks af-

fecting all districts, Wi,t is a binary treatment variable for the RFBP project equal to one

for treated districts beginning in 2003 (zero otherwise), and εi,t is conditional-mean-zero

heterogeneity. We expect the effect of the RFBP project to vary by year as planted trees

grow; thus, τ = τ2003, ..., τ2017 describe the dynamic treatment effects of the program on our

outcome variables.

We seek to estimate the average treatment effect τ̂ATE = E(τt) and dynamic treatment

effect of the RFBP τ̂ = τ̂2003, ..., τ̂2017 on rainfall, cultivated area, agricultural production,

and agricultural yield. We hypothesize that the treatment effect will be positive for rainfall,

but may be either positive or negative for the agricultural outcomes depending on whether

additional forested land substitutes for or complements each outcome. Furthermore, we

expect the magnitude of the estimated effect to grow over time as more trees were planted

and as the forests mature.

Our preferred approach compares outcomes in all districts in Rajasthan with untar-

1820 percent of districts were missing data in at least one time period and were thus eliminated from our
final sample. We find no substantial differences in the event study or TWFE regression results when we use
the full versus the balanced panel.
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Table 3: Summary statistics comparing Rajasthan with the rest of India before 2003

(1) (2) (3)
Rajasthan Controls Difference
Mean/SD Mean/SD Diff./t-stat

Log of rainfall 5.991 6.963 0.971∗∗∗

(0.631) (0.508) (20.812)
Log of Agriculture Area 6.011 5.412 -0.599∗∗∗

(0.655) (0.972) (-11.709)
Log of Agriculture Production 5.855 5.811 -0.044

(0.812) (1.127) (-0.701)
Log of Agriculture Yield -0.156 0.399 0.555∗∗∗

(0.660) (0.602) (11.294)
Total population (thousands) 1597.000 1807.925 210.926∗∗∗

(801.267) (1111.064) (4.577)
Urban population fraction 0.204 0.211 0.007

(0.113) (0.149) (1.094)
Rural population fraction 0.796 0.789 -0.007

(0.113) (0.149) (-1.094)
Literacy rate 0.399 0.488 0.089∗∗∗

(0.088) (0.132) (17.377)
Scheduled Caste fraction 0.173 0.171 -0.002

(0.057) (0.076) (-0.723)
Scheduled Tribe fraction 0.142 0.087 -0.056∗∗∗

(0.184) (0.158) (-5.497)
Fraction paved roads 0.431 0.547 0.116∗∗∗

(0.114) (0.258) (15.932)
Commercial Bank offices 3276.188 4837.610 1561.423∗∗∗

(97.997) (2389.620) (38.856)
Rural Bank offices 1061.656 1232.628 170.972∗∗∗

(11.601) (989.131) (10.716)
Agriculture Credit in Rs. Bill 18.990 25.110 6.120∗∗∗

(9.890) (16.671) (10.269)
Area irrigated by canals (1000 Ha) 47.516 37.838 -9.678

(117.974) (58.553) (-1.521)
Area irrigated by tubewells (1000 Ha) 25.459 51.108 25.649∗∗∗

(48.354) (70.167) (9.075)
Area irrigated by tanks (1000 Ha) 4.454 7.706 3.253∗∗∗

(9.798) (17.937) (5.416)
Area irrigated by other wells (1000 Ha) 79.545 22.419 -57.126∗∗∗

(76.628) (38.719) (-13.818)
Area irrigated by other sources (1000 Ha) 1.536 6.761 5.225∗∗∗

(2.955) (14.467) (18.249)
Log of fertiliser consumption 9.712 9.918 0.206∗∗∗

(0.911) (1.353) (2.862)
Log of night lights 8.141 7.977 -0.164∗∗∗

(0.909) (1.074) (-2.822)
Real GDP per capita 8799.006 10202.704 1403.698∗∗∗

(3886.472) (6234.039) (6.092)

Observations 352 4113 4465
*** p<0.01, ** p<0.05, * p<0.10
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geted districts outside of Rajasthan. During the program period from 2003-2010, the RFBP

planted trees in 18 of 32 districts in Rajasthan. This suggests several candidate treat-

ment/control comparisons—for example, comparing targeted districts versus untargeted dis-

tricts within Rajasthan, targeted districts in Rajasthan versus untargeted districts outside

of Rajasthan, or all districts in Rajasthan to districts outside of Rajasthan. We believe that

the local climate and agricultural effects of the program likely included spillover effects into

the other districts in Rajasthan that were not targeted for afforestation, which would violate

the stable unit treatment value assumptions (SUTVA) in a DID design comparing targeted

and untargeted districts within Rajasthan. Furthermore, we believe that the spillover effects

to nearby districts should be included as a measurement of the treatment effect of afforesta-

tion, so we favor the comparison of all Rajasthan districts to untargeted districts outside of

Rajasthan.19 Finally, if the spillover effects are smaller than the primary effects on targeted

districts, our chosen comparison will yield conservative estimates of the treatment effect.

Importantly, we omit 2002 from the analysis. The 2002 Indian drought had strong

effects on rainfall and agricultural outcomes across India, but particularly in Rajasthan. If

we include the drought in the pre-treatment data, our estimates would mistakenly attribute

the recovery after the drought to the RFBP, inflating our estimates. Thus, the exclusion of

data from 2002 leads to more conservative estimates.

The standard approach to estimating the average treatment effect of an intervention in

the presence of control variables is a TWFE regression:

Yi,t = µ+ αi + βt +Wi,tτ
ATE +Xi,tγ + εi,t, (2)

where Wi,t is a binary treatment variable equal to one for all Rajasthan districts in 2003 and

after, and Xi,t is a vector of controls. As controls, we include total population, the fraction of

rural population, literacy rate as a proxy for education levels, fraction of SCST population,

fraction of paved roads as a proxy for income changes, state-level allocations of agricultural

subsidies through the RKVY program, ISOPOM program, district-level coverage of NFSM

scheme, MNREGA coverage, agricultural credit, banking facilities, and real GDP per capita.

We can modify this equation to estimate the dynamic treatment effects in an event-study

specification:

Yi,t = µ+ αi + βt +
2000∑

ℓ=1997

Wi · 1(t = ℓ)τ preℓ +
2017∑

ℓ=2003

Wi · 1(t = ℓ)τ postℓ +Xi,tγεi,t, (3)

were Wi is a binary variable equal to one for all Rajasthan districts. This specification esti-

19Ultimately, either comparison yields similar treatment effect estimates, which we explore in Section 6.1.
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mates pre-trends for the periods before the intervention and the dynamic treatment effects.

Following Borusyak and Jaravel (2018), we omit the indicator for the final pre-treatment

period (2001) as the base case. Estimating equations (2) and (3) via ordinary least squares

yields an unbiased estimate of the average treatment effect and dynamic average treatment

effect under standard parallel trends, no spillovers, and strict exogeneity assumptions.

Ultimately, we believe it is unlikely that the parallel trends assumption will hold given

non-parallel trends in the pre-treatment data, so we turn to the synthetic DID approach

introduced by Arkhangelsky et al. (2021). The parallel trends assumption requires that,

in absence of the RFBP intervention, outcomes for treated and control groups would have

evolved at the same rate. The synthetic DID approach estimates unit and time weights

to create a synthetic control group that exhibits parallel trends to the treatment group in

the pre-treatment period. In Figure 4, we plot averages of our outcome variables for the

treatment group, evenly-weighted DID control group, and synthetic-DID-weighted control

group. Relative to both control groups, we see increases in all outcomes for Rajasthan after

the RFBP began, and particularly in the period 2010-2017.

The synthetic DID estimate of the average treatment effect solves the following weighted

least-squares problem:

(τ̂SDID, µ̂, α̂, β̂) = argmin
τ,µ,α,β

{
N∑
i=1

2017∑
t=1995

(
Ỹi,t − µ− αi − βt −Wi,tτ

)2
ω̂sdid
i λ̂sdid

t

}
, (4)

where Ỹi,t are the residuals of outcome Yi,t after partialing out Xi,t by applying the Frisch-

Waugh-Lovell theorem on untreated districts (Kranz, 2022), and ω̂sdid
i and λ̂sdid

t are the

synthetic DID weights for post-treatment period j.20 Thus, in the first stage, we regress the

agricultural outcomes Yi,t on controls Xi,t in untreated units, obtaining OLS estimates β̂OLS.

We then obtain the partialed-out agricultural outcomes Ỹi,t = Yi,t −Xi,tβ̂
OLS and substitute

these for the outcome variable in the synthetic DID. The new agricultural outcome variables

are now orthogonal to variation in the covariates, allowing us to estimate the direct effects of

the RFBP program, holding the covariates fixed. This partialing-out approach to including

controls in the synthetic DID is suggested in Arkhangelsky et al. (2021) and Kranz (2022).

We do not control for additional covariates in the rainfall estimation as rainfall is not a

function of demographic or economic factors.

To estimate the dynamic treatment effects, we modify the standard synthetic DID ap-

proach to estimate a separate synthetic DID for each post-treatment year, giving an es-

timate of the treatment effect for each year after the RFBP was implemented. Let j ∈
20For reference, we reproduce the definitions of the standard synthetic DID unit and time weights from

Arkhangelsky et al. (2021) in Appendix A.
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{2003, ..., 2017} index post-treatment years, and let Tj = {1997, ..., 2001, j} be the set of

pre-treatment years augmented with the post-treatment year j. We estimate the dynamic

treatment effect τ sdidj for each post-treatment year j using the synthetic DID-weighted re-

gressions:

(τ̂ sdidj , µ̂, α̂, β̂) = argmin
τ,µ,α,β


N∑
i=1

∑
t∈Tj

(
Ỹi,t − µ− αi − βt −Wi,tτj

)2
ω̂sdid
i λ̂sdid,j

t

 , (5)

where ω̂sdid
i and λ̂sdid,j

t are the synthetic DID weights for post-treatment period j. Note that

the unit weights in equations 4 and 5 are the same while the time weights are different.

This is because the synthetic DID unit weights are estimated to ensure parallel pre-trends

and are only based on the pre-treatment data, which is the same in each synthetic DID.

The synthetic DID time weights are estimated to provide additional weight to pre-treatment

periods with similar values to the post-period, which will be different for each post-period.21

In addition, we hypothesize that districts in Rajasthan that were direct targets of af-

forestation under the RFBP program may have been affected differently than nearby dis-

tricts that potentially received environmental amenities without having to directly sacrifice

land for forests. The direct effects of afforestation may increase the scarcity of agricultural

inputs, while nearby districts enjoy the spillovers of environmental amenities without hav-

ing to sacrifice land for forests. To test the possibility of differences between direct and

spillover effects, we estimate the effect of the afforestation program separately for districts

directly targeted and those (in Rajasthan) that were not targeted, using the synthetic DID

event-study approach (Eq. 5).

Finally, we examine the extent to which increases in rainfall versus direct effects of

afforestation account for the observed differences in Rajasthan’s agricultural output. The

program may have had a direct effect on a district by consuming resources that may have

been used for agriculture but may have had an indirect effect via the mechanism of increased

rainfall. To distinguish the direct effect from the rainfall effect, we augment our control

variables Xi,t with the amount of rainfall in the district, which controls for variation in

the agricultural area, production, and yield that depends on rainfall. We then apply the

synthetic DID event-study approach in Eq. 5. If these estimates differ from the mainline

estimates, this is evidence that any effects of the RFBP are occurring through the rainfall

channel.

21Brewer and Cameron (2023) compare re-estimating the synthetic DID for each time period in an event-
study framework relative to using the same time weights estimated for the average value of post-period
outcomes.
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Figure 4: Average values of logged outcome variables after partialing out demographic con-
trols for Rajasthan, the unweighted DID control group, and synthetic-DID-weighted control
group.
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Table 4: Average treatment effect estimates

Rainfall Area Production Yield
(1) (2) (3) (4) (5) (6) (7) (8)

TWFE SDID TWFE SDID TWFE SDID TWFE SDID
Post × Treated 0.12∗∗∗ 0.02∗ 0.15∗∗∗ 0.22∗∗∗ 0.27∗∗∗ 0.24∗∗∗ 0.11∗∗∗ 0.05

(0.01) (0.01) (0.03) (0.03) (0.04) (0.04) (0.03) (0.04)
N 7992 8880 8880 8880 8880 8880 8880 8880
Unit FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Covariates Yes Yes Yes Yes Yes Yes

TWFE results are estimated from Eq. 2. SDID results are estimated from Eq. 4. Standard errors clustered at the district level.
SDID standard errors derived from cluster-bootstrap with 500 replications. * p < 0.05, ** p < 0.01, *** p < 0.001

6 Results

Table 4 displays our estimates of the RFBP program’s average treatment effect on rainfall,

an agricultural area, agricultural production, and agricultural yield. All standard errors

account for clustering at the district level, the level of treatment assignment in the program

(Abadie et al., 2022). We display estimates from the TWFE specification from equation

(2) and the synthetic DID specification from equation (4). The synthetic DID is our pre-

ferred approach given the improvement in parallel pre-trends (Figure 4), but our results are

roughly consistent across both approaches. Relative to the synthetic DID control group, our

synthetic DID estimates indicate that rainfall increased by 2%, agricultural area increased

by 22%, agricultural production increased by 24%, and agricultural yield increased by 5%

after the implementation of the RFBP program. Though the estimated increase in yield is

not statistically significant, it is consistent with the estimated increase in rainfall.

Figure 5 displays the event-study estimates of the effect of the RFBP program. The

TWFE and synthetic DID estimates are similar for each outcome, but differ for rainfall,

primarily due to the larger number of districts given zero weight by the synthetic DID

algorithm. For rainfall, cultivated area, and production, we see larger positive effects in 2010

and beyond, which is consistent with our hypothesis that the effects of the program would

increase as the planted forests grew. Here also, we prefer the synthetic DID event-study

estimates to the TWFE estimates due to the improved parallel pre-trends in Figure 4, so

our discussion below focuses on the synthetic DID estimates. Each coefficient is interpreted

as the approximate percentage change in the outcome for Rajasthan relative to the control

group and relative to the pre-RFBP period (1997-2001).

The rainfall estimates (Figure 5a) suggest that Rajasthan had lowered levels of precipita-

tion relative to the control group from 2003-2009. These negative estimates range from 0-15
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Figure 5: TWFE and synthetic DID event-study estimates with 95% confidence intervals,
accounting for clustering.
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percent lower levels of rainfall, but we did not expect any early positive effects on rainfall

until plantings had begun to grow and mature. In 2010 and after, Rajasthan had higher lev-

els of precipitation relative to the control group, except in 2014 where the estimate is close

to zero. The estimated increase after starting in 2010 ranges from 10-30 percent. These

findings are consistent with the delayed positive effects of afforestation on rainfall, which is

likely to have had a beneficial effect on agriculture.

Our estimates in Figures 5b and 5c suggest that agricultural area and production in Ra-

jasthan increased relative to the control group and pre-period in all years after the beginning

of the RFBP program. From 2003-2009, the agricultural area was 10-25 percent higher per

year relative to the control group and pre-period. From 2010 and beyond, the agricultural

area was 25-35 percent higher per year. Similarly, agricultural production was 20-30 percent

higher from 2003 to 2008, dipped in 2009, and rose to 50 percent higher from 2010-2017.

These estimates suggest that even while land was being converted to forest during the RFBP

program, agricultural area and production increased in Rajasthan. The increase in 2010 co-

incides with the increase in rainfall, which may in part reflect farmers’ responses to increased

rainfall. Moreover, these findings run counter to the popular belief that increasing forest area

necessarily displaces agriculture.

Finally, Figure 5d displays our event study estimates for agricultural yield. Again focusing

on our synthetic DID specification, the year-specific treatment effects are mixed. We find no

statistically significant effect for Rajasthan relative to the control group and pre-period in

eight of fifteen post-treatment years, and in two years (2005 and 2008) yield was significantly

lower. In the remaining five years, however, yield in Rajasthan appears to have increased.

Thus, while we find evidence of an increase in some years, yield seems to have reverted to

pre-treatment levels in others, suggesting that agricultural area and production increased

at roughly the same rate over time, which is consistent with the similarity of the average

treatment effects for area and production reported in Table 4. Thus, while we find suggestive

evidence of a positive effect of the RFBP on yield due to increased ecosystem services related

to rainfall, on balance the effect appears to have been limited at best. We therefore consider

these results to be inconclusive; future studies using a longer time horizon may prove more

fruitful.

6.1 Targeted district effects versus spillovers

Our main approach considers outcomes for all of Rajasthan—however, the RFBP only tar-

geted roughly half of the districts in Rajasthan for afforestation. We investigate the difference

between direct effects versus spillover effects by analyzing the effect of the RFBP program
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Figure 6: Synthetic DID event-study estimates with 95% confidence intervals accounting
for clustering comparing districts in Rajasthan targeted by the RFBP program and districts
that did not directly receive afforestation.
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on our dependent variables separately for targeted and untargeted districts in Rajasthan. If

the direct effects of the program have a net crowding-out effect on agricultural activities, we

would expect a more negative estimated effect on agriculture for targeted districts relative

to untargeted districts. Conversely, if the direct effects of the program had a beneficial effect

on agricultural activities, we would expect a more positive estimated effect on agriculture for

targeted districts relative to untargeted districts. We do not expect to see differences in the

effect on rainfall because we expect any local weather effects to have geographic spillovers.

To test these hypotheses, we estimate two separate synthetic DID event studies (equation

5) for targeted and untargeted districts.

Figure 6 displays our differentiated synthetic DID estimates of the target effects versus

spillover effects of the RFBP program. Across all outcomes, the estimated effects follow

similar patterns. As expected, the effects of rainfall are very similar (Figure 6a). It appears

that the increases in the agricultural area were systematically higher for directly targeted

districts versus spillover districts (Figure 6b), but this does not translate into differences

in production (Figure 6c) or yield (Figure 6d). Overall, we conclude that the effects of

the afforestation program on our outcomes accrued to the region broadly and were not

concentrated in treated districts.

6.2 Effect net of rainfall

The effect of the RFBP program on agriculture may come through a direct impact (e.g.,

competition for land or labor resources), or via an indirect impact by increasing rainfall.

We estimate the direct effect of the program by partialing out the effect of rainfall from the

agricultural variables. We then re-estimate the synthetic DID on the residualized agricultural

outcomes to estimate the effect of the program net of any rainfall effects. Because we only

have district-level rainfall data through 2015, we can only estimate the effects net of rainfall

through 2015.

We display our synthetic DID estimates using the residualized agricultural outcomes in

Figure 7, which we compare to our main estimates from Figure 5. The largest difference is

that most of the effects before 2010 are smaller and some estimates are statistically indistin-

guishable from zero, particularly for the agricultural area (Figure 7a). Even so, the majority

of effects before 2010 are either zero or positive, with only one negative effect that is statis-

tically different from zero for yield (Figure 7c). From 2010 and onward, we estimate large

positive effects that are slightly larger than in our main estimates. Overall, this suggests

that any effects of the RFBP program through the rainfall channel were small and that net

of rainfall, the direct effects of the program on agricultural outcomes were positive rather
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Figure 7: Comparison of main event-study estimates with estimates net of rainfall.
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than negative.

6.3 Crop-level Analysis

Next, we estimate the average treatment effects of the RFBP program on area, production,

and yield for specific crops using a TWFE specification to compare districts in Rajasthan

with all other districts in India.

Rajasthan’s major crops are pearl millet (28% area in the pre-treatment period), oilseeds

(22%), wheat (14%), minor pulses (12%), chickpeas (9%), corn (6%), sorghum (4%), and

cotton (3%), along with small amounts of barley, soybeans, and rice. To gain insight into

how farmers might have responded to changes in rainfall, we categorize each crop as either

water-intensive or non-water-intensive based on definitions found in Sharma et al. (2018).

Rajasthan is an arid state; consequently, Figure 8 confirms that roughly three-quarters of the

total cultivated area in Rajasthan was devoted to non-water-intensive crops (pearl millet,

oilseeds, minor pulses, chickpeas, sorghum, and barley) over our sample period, and only

one-quarter to water-intensive crops (rice, wheat, cotton, soybeans, corn). This distribution

across water-intensive and non-water-intensive crops appears to remain fairly stable over

time—that is, Figure 8 does not suggest that Rajasthan farmers significantly altered their

crop mix in the post-RFBP period.
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Figure 8: Area under cultivation for water-intensive crops in Rajasthan

However, Table 5 shows the average treatment effects for each crop, grouped into water-

intensive crops and non-water-intensive crops, from which a clear pattern emerges. Specif-

ically, we find little effect of the RFBP on water-intensive crops. The two exceptions are
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wheat, which increased in area, production, and yield in the post-treatment period, and

corn, which decreased in area and production. Contrast this to the results for the six non-

water-intensive crops; we find statistically significant increases in the area for four of six,

increases in production for five of six, and most importantly, increases in yield for all six

non-water-intensive crops.

Perhaps counterintuitively, this contrast in treatment effects across water-intensive and

non-water-intensive crops is consistent with the hypothesis that the agricultural sector in

Rajasthan responded to, and benefited from, an increase in local rainfall in the post-RFBP

period. Although not universally true, in general, water-intensive crops are relatively more

reliant on irrigation than rainfall, because rainfall is, by nature, more variable and therefore

less reliable than irrigation. Thus, we should not expect an increase in rainfall in the post-

RFBP period to have had much impact on the cultivation of heavily irrigated water-intensive

crops. Conversely, non-water-intensive crops are typically relatively less reliant on irrigation

and can survive more readily on natural rainfall levels. Thus, that we find statistically

significant increases in yield for all six non-water-intensive crops in the post-RFBP period

is consistent with, and provides additional evidence in support of, the hypothesis that the

RFBP led to beneficial increases in local rainfall levels.

Table 5: Crop-level average treatment effect (TWFE)

Water Intensive Crops
Dep. Var. Wheat Corn Cotton Rice Soybeans
Area 0.11∗ -0.23∗∗∗ 0.05 0.04 -0.06

(0.06) (0.06) (0.09) (0.06) (0.06)
Production 0.20∗∗ -0.31∗∗∗ -0.07 0.13 -0.08

(0.07) (0.09) (0.07) (0.08) (0.06)
Yield 0.09∗ -0.08 -0.13∗∗ 0.09 -0.01

(0.04) (0.04) (0.04) (0.05) (0.02)
N 8655 8797 7726 8822 7337

Non Water Intensive Crops
Dep. Var. Pearl Millet Oil seeds Minor Pulses Chickpea Sorghum Barley
Area 0.26∗∗∗ 0.25∗∗∗ 0.24∗ -0.19 0.17 0.13∗

(0.05) (0.05) (0.11) (0.12) (0.09) (0.06)
Production 0.64∗∗∗ 0.35∗∗∗ 0.47∗∗∗ -0.11 0.44∗∗∗ 0.30∗∗∗

(0.08) (0.06) (0.13) (0.12) (0.12) (0.08)
Yield 0.37∗∗∗ 0.12∗∗∗ 0.22∗∗∗ 0.09∗∗ 0.27∗∗∗ 0.18∗∗∗

(0.06) (0.04) (0.06) (0.03) (0.08) (0.03)
N 8034 7011 8302 8688 8135 8082

TWFE estimates from Eq. 2. Each regression contains unit FE, year FE, and all covariates. Standard errors clustered
at the district level. * p < 0.05, ** p < 0.01, *** p < 0.001
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7 Discussion and Conclusion

This paper explores the impact of a major afforestation program, the RFBP, on the local

agricultural sector in Rajasthan, India. Generally, we find evidence that the agricultural

sector was not displaced by afforestation, and in fact, may have benefited from the increased

forest area. Our results have important implications for afforestation programs in developing

agricultural regions. Our empirical estimates suggest a delayed increase in rainfall beginning

six years following the first plantings in the RFBP afforestation program. Moreover, we see

that agricultural area and production increased during this same period. Finally, we esti-

mate statistically insignificant but large increases in yields. This suggests that the RFBP

program contributed to a modest increase in rainfall and that the afforestation was not an

impediment to agricultural development. We find evidence that the increase in rainfall was,

at best, only partly responsible for the observed agricultural increases and find it implau-

sible that any other ecosystem services can account for the large increases in agricultural

productivity. This interpretation is further supported by the lack of difference in estimates

for districts directly receiving afforestation versus those nearby. Nevertheless, these findings

are important evidence against the hypothesis of crowding out of agriculture.

Our lack of evidence for crowding out of the agricultural sector may have been influenced

by three factors: the size of the afforestation project, the land targeted for afforestation, and

stakeholder engagement. Just over 100,000 hectares were targeted for afforestation under the

program. While this is a large effort, it pales in comparison to some of the most ambitious

afforestation projects, which can cover millions of hectares.22 To put the afforestation effort

into perspective, each district in Rajasthan had over 100,000 hectares of agricultural land in

2017. Larger afforestation efforts may result in a crowding-out effect. Furthermore, in the

case of the RFBP, most of the land targeted for afforestation was located in hilly regions,

which are less likely to be used for agricultural purposes. Finally, stakeholder engagement

was a major focus of the RFBP effort. This engagement may have also played a role to

ensure that land valuable for agriculture (or other uses) was not targeted for afforestation

(Hristov et al., 2020).

An increase in local rainfall increases the value of carbon-sink-induced afforestation, par-

ticularly in arid regions and regions where rainfall is an important input to agriculture. Our

findings suggest that targeting afforestation projects in arid regions may have substantial

local co-benefits in addition to the global benefits of sequestered carbon. Not included in

our analysis were potential cost savings to the agricultural sector from the reduced need

22For instance, the largest afforestation project is the African Green Great Wall, which has a goal of over
100 million hectares of forest restoration: https://www.greatgreenwall.org/2030ambition.
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for irrigation. Similarly, a reduction in severe drought risk may further increase the size

of potential co-benefits from afforestation projects. Further research is needed to quantify

these and other possible co-benefits of afforestation and to re-optimize climate mitigation

strategies to account for these potentially significant indirect impacts on the agricultural

sector.
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Dhubháin, Á. N., Fléchard, M.-C., Moloney, R., and O’Connor, D. (2009). Assessing the

value of forestry to the Irish economy—an input–output approach. Forest Policy and

Economics, 11(1):50–55.

Dolisca, F., Carter, D. R., McDaniel, J. M., Shannon, D. A., and Jolly, C. M. (2006). Factors

influencing farmers’ participation in forestry management programs: A case study from

Haiti. Forest Ecology and Management, 236(2-3):324–331.

Dupouey, J.-L., Dambrine, E., Laffite, J.-D., and Moares, C. (2002). Irreversible impact of

past land use on forest soils and biodiversity. Ecology, 83(11):2978–2984.
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A Synthetic DID weights

In this section, we reprise the synthetic DID weights from Arkhangelsky et al. (2021) for

reference.

Here we reproduce the synthetic DID weights from Arkhangelsky et al. (2021) for refer-

ence. Let N be the number of units and T be the number of time periods, where the first

Nco units are in the control group, and the last Ntr = N −Nco units are treated after time

period Tpre.

The synthetic DID unit weights solve

(ω̂0, ω̂
sdid) = argmin

ω0∈R,ω∈Ω
funit(ω0, ω) (6)

where

funit(ω0, ω) =

Tpre∑
t=1

(
ω0 +

Nco∑
i=1

ωiYi,t −
1

Ntr

N∑
i=Nco+1

Yi,t

)2

+ ζ2Tpre||ω||22,

Ω =

{
ω ∈ RN

+ :
Nco∑
i=1

ωi = 1, ωi = N−1
tr for all i = Nco + 1, ..., N

}

where R+ is the set of positive real numbers. The regularization parameter is given by

ζ = (NtrTpost)
1/4σ̂ with σ̂2 =

1

Nco(Tpre − 1)

Nco∑
i=1

Tpre−1∑
t=1

(∆i,t − ∆̄)2, (7)

with

∆i,t = Yi,(t+1) − Yi,t and ∆̂ =
1

Nco(Tpre − 1)

Nco∑
i=1

Tpre−1∑
t=1

∆i,t.

The synthetic DID time weights solve

(λ̂0, λ̂
sdid) = argmin

λ0∈R,λ∈Λ
ftime(λ0, λ), (8)
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where

ftime(λ0, λ) =
Nco∑
i=1

λ0 +

Tpre∑
t=1

λtYi,t −
1

Tpost

T∑
t=Tpre+1

Yi,t

2

,

Λ =

{
λ ∈ RT

+ :

Tpre∑
t=1

λt = 1, λt = T−1
post for all t = Tpre + 1, ..., T

}
.
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